
Lightweight compositional analysis of
metagenomes with FracMinHash and minimum

metagenome covers
This manuscript (permalink) was automatically generated from dib-lab/2020-paper-sourmash-gather@b2b79b8 on January

17, 2022.

Authors

Luiz Irber
 0000-0003-4371-9659 · luizirber · luizirber

Graduate Group in Computer Science, UC Davis; Department of Population Health and Reproduction, UC Davis ·
Funded by Grant GBMF4551 from the Gordon and Betty Moore Foundation; Grant R01HG007513 from the NIH NHGRI

Phillip T. Brooks
 0000-0003-3987-244X · brooksph · brooksph

Department of Population Health and Reproduction, UC Davis · Funded by Grant GBMF4551 from the Gordon and
Betty Moore Foundation

Taylor Reiter
 0000-0002-7388-421X · taylorreiter · ReiterTaylor

Graduate Group in Food Science, UC Davis; Department of Population Health and Reproduction, UC Davis · Funded by
Grant GBMF4551 from the Gordon and Betty Moore Foundation; Grant R03OD030596 from the NIH Common Fund

N. Tessa Pierce-Ward
 0000-0002-2942-5331 · bluegenes · saltyscientist

Department of Population Health and Reproduction, UC Davis · Funded by Grant 1711984 from the NSF; Grant
GBMF4551 from the Gordon and Betty Moore Foundation; Grant 2018911 from the NSF

Mahmudur Rahman Hera
· mahmudhera · HeraMahmudur
Department of Computer Science and Engineering, Penn State University · Funded by Grant 2029170 from the NSF

David Koslicki
 0000-0002-0640-954X · dkoslicki · DavidKoslicki

Department of Computer Science and Engineering, Penn State University; Department of Biology, Penn State
University; Huck Institutes of the Life Sciences, Penn State University · Funded by Grant 2029170 from the NSF

C. Titus Brown
 0000-0001-6001-2677 · ctb

Department of Population Health and Reproduction, UC Davis · Funded by Grant GBMF4551 from the Gordon and
Betty Moore Foundation; Grant R01HG007513 from the NIH NHGRI; Grant 2018911 from the NSF; Grant R03OD030596
from the NIH Common Fund

https://dib-lab.github.io/2020-paper-sourmash-gather/v/b2b79b86dc15762eb9e4567983b5c0b155809c89/
https://github.com/dib-lab/2020-paper-sourmash-gather/tree/b2b79b86dc15762eb9e4567983b5c0b155809c89
https://orcid.org/0000-0003-4371-9659
https://github.com/luizirber
https://twitter.com/luizirber
https://orcid.org/0000-0003-3987-244X
https://github.com/brooksph
https://twitter.com/brooksph
https://orcid.org/0000-0002-7388-421X
https://github.com/taylorreiter
https://twitter.com/ReiterTaylor
https://orcid.org/0000-0002-2942-5331
https://github.com/bluegenes
https://twitter.com/saltyscientist
https://github.com/mahmudhera
https://twitter.com/HeraMahmudur
https://orcid.org/0000-0002-0640-954X
https://github.com/dkoslicki
https://twitter.com/DavidKoslicki
https://orcid.org/0000-0001-6001-2677
https://github.com/ctb

Abstract

The identi�cation of reference genomes and taxonomic labels from metagenome data underlies many
microbiome studies. Here we describe two algorithms for compositional analysis of metagenome
sequencing data. We �rst investigate the FracMinHash sketching technique, a derivative of modulo
hash that supports Jaccard containment estimation between sets of di�erent sizes. We implement
FracMinHash in the sourmash software, evaluate its accuracy, and demonstrate large-scale
containment searches of metagenomes using 700,000 microbial reference genomes. We next frame
shotgun metagenome compositional analysis as the problem of �nding a minimum collection of
reference genomes that “cover” the known k-mers in a metagenome, a minimum set cover problem.
We implement a greedy approximate solution using FracMinHash sketches, and evaluate its accuracy
for taxonomic assignment using a CAMI community benchmark. Finally, we show that the minimum
metagenome cover can be used to guide the selection of reference genomes for read mapping.
sourmash is available as open source software under the BSD 3-Clause license at github.com/dib-
lab/sourmash/.

Introduction
Shotgun DNA sequencing of microbial communities is an important technique for studying host-
associated and environmental microbiomes [1,2]. By sampling the genomic content of microbial
communities, shotgun metagenomics enables the taxonomic and functional characterization of
microbiomes [3,4]. However, this characterization relies critically on the methods and databases used
to interpret the sequencing data [5,6,7,8].

Metagenome function and taxonomy are typically inferred from available reference genomes and
gene catalogs, via direct genomic alignment [9,10], large-scale protein search [11,12,13], or k-mer
matches [14,15]. For many of these methods, the substantial increase in the number of available
microbial reference genomes (1.1m in GenBank as of November 2021) presents a signi�cant practical
obstacle to comprehensive compositional analyses. Most methods choose representative subsets of
available genomic information to analyze; for example, bioBakery 3 provides a database containing
99.2k reference genomes [9]. Scaling metagenome analysis approaches to make use of the rapidly
increasing size of GenBank is an active endeavor in the �eld [16,17].

Here, we describe a lightweight and scalable approach to compositional analysis of shotgun
metagenome data based on �nding the minimum set of reference genomes that accounts for all
known k-mers in a metagenome - a “minimum metagenome cover”. We use a mod-hash based
sketching approach for k-mers to reduce memory requirements [18], and implement a polynomial-
time greedy approximation algorithm for the minimum set cover analysis [19].

Our approach tackles the selection of appropriate reference genomes for downstream analysis and
provides a computationally e�cient method for taxonomic classi�cation of metagenome data. Our
implementation in the sourmash open source software package works with reference databases
containing a million or more microbial genomes and supports multiple taxonomies and private
databases.

Results
We �rst describe FracMinHash, a sketching technique that supports containment and overlap
estimation for DNA sequencing datasets using k-mers. We next frame reference-based metagenome

https://github.com/dib-lab/sourmash/

content analysis as the problem of �nding a minimum set cover for a metagenome using a collection
of reference genomes. We then evaluate the accuracy of this approach using a taxonomic
classi�cation benchmark. Finally, we demonstrate the utility of this approach by using the genomes
from the minimum metagenome cover as reference genomes for read mapping.

FracMinHash sketches support accurate containment
operations

We de�ne the fractional MinHash, or FracMinHash as follows: for a hash function , on
an input set of hash values and for any ,

where is the largest possible value in the domain of and is the maximum hash value
allowed in the FracMinHash sketch.

The FracMinHash is a mix of MinHash and ModHash [18,20]. It keeps the selection of the smallest
elements from MinHash, while using the dynamic size from ModHash to allow containment
estimation. However, instead of taking elements like , a FracMinHash uses
the parameter to select a subset of .

Like ModHash (but not MinHash), FracMinHash supports estimation of the containment index:

See Methods for details.

Given a uniform hash function and , the cardinalities of and
converge for large . The main di�erence is the range of possible values in the hash space, since
the FracMinHash range is contiguous and the ModHash range is not. This permits a variety of
convenient operations on the sketches, including iterative downsampling of FracMinHash sketches as
well as conversion to MinHash sketches. Beyond accurate containment operations, FracMinHash can
be used to estimate evolutionary distance between pairs of sequences undergoing a mutation model,
similar to but more accurately than the MinHash derived method in [20]. See [21] for these and other
analytical details.

A FracMinHash implementation accurately estimates
containment between sets of di�erent sizes

We compare the FracMinHash method, implemented in the sourmash software [22], to Containment
MinHash [23] and Mash Screen (Containment Score) [24] for containment queries in data from the
podar mock community, a mock bacterial and archaeal community where the reference genomes

are largely known [25]; see also Table 1, row 2. This data set has been used in several methods
evaluations [24,26,27,28].

h : Ω → [O,H]
W ⊆ Ω 0 <= s <= H

FRACs(W) = {h(w) ≤ ∣ ∀w ∈ W }
H

s
H h(x) H

s

0 mod m MODm(W)
s W

Ĉfrac(A,B) := .
|FRACS(A) ∩ FRACS(B)|

|FRACS(A)|

h s = m FRACs(W) MODm(W)
|W |

Figure 1: Letter-value plot [29] of the di�erences from containment estimate to ground truth (exact). Each
method is evaluated for , except for Mash with , which is unsupported.

Figure 1 shows containment analysis of genomes in this metagenome, with low-coverage and
contaminant genomes (as described in [28] and [24]) removed from the database. All methods are
within 1% of the exact containment on average (Figure 1), with CMash consistently underestimating
the containment. Mash Screen with has the smallest di�erence to ground truth for

, followed by FracMinHash with scaled=1000 and Mash Screen with .
The sourmash sketch sizes varied between 431 hashes and 9540 hashes, with a median of 2741
hashes.

FracMinHash can be used to construct a minimum set cover for
metagenomes

We next ask: what is the smallest collection of genomes in a database that contains all of the known k-
mers in a metagenome? Formally, for a given metagenome and a reference database , what is
the minimum collection of genomes in which contain all of the k-mers in the intersection of and

? We wish to �nd the smallest set of genomes in such that, for the k-mer decomposition
,

This is a minimum set covering problem, for which there is a polynomial-time approximation [19]:

1. Initialize
2. While is nonempty:

k = {21, 31, 51} k = 51

n = 10000
k = {21, 31} n = 1000

M D
D D

M {Gn} D

k()

k(M) ∩ k(D) = ⋃
n

{k(M) ∩ k(Gn)}

C ← ∅
k(M) ∩ k(D) ∖ ⋃G∈C(k(M) ∩ k(G))

3.
4. return

This greedy algorithm iteratively chooses reference genomes from in order of largest remaining
overlap with , where overlap is in terms of number of k-mers. This results in a progressive
classi�cation of the known k-mers in the metagenome to speci�c genomes.1 Note it is classically
known that this greedy heuristic results in a logarithmic approximation factor to the optimal set cover
solution [19]. This algorithm is implemented as sourmash gather .

In Figure 2, we show an example of this progressive classi�cation of 31-mers by matching GenBank
genome for podar mock . The matching genomes are provided in the order found by the greedy
algorithm, i.e. by overlap with remaining k-mers in the metagenome. The high rank (early) matches
re�ect large and/or mostly-covered genomes with high containment, while later matches re�ect
genomes that share fewer k-mers with the remaining set of k-mers in the metagenome - smaller
genomes, less-covered genomes, and/or genomes with substantial overlap with earlier matches.
Where there are overlaps between genomes, shared common k-mers are “claimed” by higher rank
matches and only k-mer content speci�c to the later genome is used to �nd lower rank matches.

As one example of metagenome k-mers shared with multiple matches, genomes from two strains of
Shewanella baltica are present in the mock metagenome. These genomes overlap in k-mer content by
approximately 50%, and these shared k-mers are �rst claimed by Shewanella baltica OS223 – compare
S. baltica OS223, rank 8, with S. baltica OS185, rank 33 in Figure 2. Here the di�erence between the
green triangles (all matched k-mers) and red circles (min-set-cov matched k-mers) for S. baltica OS185
represents the k-mers claimed by S. baltica OS223 .

For this mock metagenome, 205m (54.8%) of 375m k-mers were found in GenBank (see Table 1, row
2). The remaining 169m (45.2%) k-mers had no matches, and represent either k-mers introduced by
sequencing errors or k-mers from real but unknown community members.

C ← C ⋃ {arg maxG∈D |k(G) ∪ (k(M) ∩ k(D) ∖ ⋃G∈C(k(M) ∪ k(G)))|}
C

D
M

Figure 2: K-mer decomposition of a metagenome into constituent genomes. A rank ordering by remaining
containment for the �rst 36 genomes from the minimum metagenome cover of the podar mock synthetic
metagenome [25], calculated using 700,000 genomes from GenBank with scaled=2000, k=31. The Y axis is labeled with
the NCBI-designated name of the genome. In the left plot, the X axis represents the estimated number of k-mers shared
between each genome and the metagenome. The red circles indicate the number of matching k-mers that were not
matched at previous ranks, while the green triangle symbols indicate all matching k-mers. In the right plot, the X axis
represents the estimated k-mer coverage of that genome. The red circles indicate the percentage of the genome
covered by k-mers remaining at that rank, while the green triangles indicate overlap between the genome and the entire
metagenome, including those already assigned at previous ranks.

Minimum metagenome covers can accurately estimate
taxonomic composition

We evaluated the accuracy of min-set-cov for metagenome decomposition using benchmarks from
the Critical Assessment of Metagenome Interpretation (CAMI), a community-driven initiative for
reproducibly benchmarking metagenomic methods [30]. We used the mouse gut metagenome
dataset [31], in which a simulated mouse gut metagenome (MGM) was derived from 791 bacterial and
archaeal genomes, representing 8 phyla, 18 classes, 26 orders, 50 families, 157 genera, and 549
species. Sixty-four samples were generated with CAMISIM, with 91.8 genomes present in each sample
on average. Each sample is 5 GB in size, and both short-read (Illumina) and long-read (PacBio)
simulated sequencing data is available.

Since min-set-cov yields only a collection of genomes, this collection must be converted into a
taxonomy with relative abundances for benchmarking with CAMI. We developed the following

procedure for generating a taxonomic pro�le from a given metagenome cover. For each genome
match, we note the species designation in the NCBI taxonomy for that genome. Then, we calculate the
fraction of the genome remaining in the metagenome after k-mers belonging to higher-rank genomes
have been removed (i.e. red circles in Figure 2 (a)). We multiply this fraction by the median abundance
of the hashes in the sketch to weight the contribution of the genome’s species designation to the
metagenome taxonomy. This procedure produces an estimate of that species’ taxonomic contribution
to the metagenome, normalized by the genome size.

Figure 3: Comparison per taxonomic rank of methods in terms of completeness, purity (1% �ltered), and L1 norm.

Figure 4: Methods rankings and scores obtained for the di�erent metrics over all samples and taxonomic ranks. For
score calculation, all metrics were weighted equally. A scaled value of 2000 and a k-mer size of 31 was used.

In Figures 3 and 4 we show an updated version of Figure 6 from [31] that includes our method,
implemented in the sourmash software and benchmarked using OPAL [32]. The minimum
metagenome cover was calculated against the Jan 8, 2019 snapshot of RefSeq provided by the CAMI
project. Here we compare 10 di�erent methods for taxonomic pro�ling and their characteristics at
each taxonomic rank. While previous methods show reduced completeness – the ratio of taxa
correctly identi�ed in the ground truth – below the genus level, sourmash can reach 88.7%
completeness at the species level with the highest purity (the ratio of correctly predicted taxa over all
predicted taxa) across all methods: 95.9% when �ltering predictions below 1% abundance, and 97%
for un�ltered results. sourmash also has the second lowest L1-norm error, the highest number of
true positives and the lowest number of false positives.

Minimum metagenome covers select small subsets of large
databases

Table 1: Four metagenomes and the number of genomes in the estimated minimum metagenome cover from
GenBank, with scaled=2000 and k=31. Overlap and % 31-mers identi�ed are estimated from FracMinHash sketch size.

data set genomes >= 100k 31-mer
overlap size of min-set-cov % 31-mers identi�ed

zymo mock 405,839 19 47.1%

podar mock 5,800 74 54.8%

gut real 96,423 99 36.0%

oil well real 1,235 135 14.9%

In Table 1, we show the minimum metagenome cover for four metagenomes against GenBank - two
mock communities [25,33], a human gut microbiome data set from iHMP [3], and an oil well sample
[34]. Our implementation provides estimates for both the total number of genomes with substantial
overlap to a query genome, and the minimum set of genomes that account for k-mers with overlap in
the query metagenome. Note that only matches estimated to have more than 100,000 overlapping k-
mers are shown (see Methods for details).

We �nd many genomes with overlaps for each metagenome, due to the redundancy of the reference
database. For example, zymo mock contains a Salmonella genome, and there are over 200,000
Salmonella genomes that match to it in GenBank. Likewise, gut real matches to over 75,000 E. coli
genomes in GenBank. Since neither podar mock nor oil well real contain genomes from
species with substantial representation in GenBank, they yield many fewer total overlapping
genomes.

Regardless of the number of genomes in the database with substantial overlap, the estimated
minimum collection of genomes is always much smaller than the number of genomes with overlaps.
In the cases where the k-mers in the metagenome are mostly identi�ed, this is because of database
redundancy: e.g. in the case of zymo mock , the min-set-cov algorithm chooses precisely one
Salmonella genome from the 200,000+ available. Conversely, in the case of oil well real , much
of the sample is not identi�ed, suggesting that the small size of the covering set is because much of
the sample is not represented in the database.

Minimum metagenome covers provide representative
genomes for mapping

Mapping metagenome reads to representative genomes is an important step in many microbiome
analysis pipelines, but mapping approaches struggle with large, redundant databases [16,17]. One
speci�c use for a minimum metagenome cover could be to select a small set of representative
genomes for mapping. We therefore developed a hybrid selection and mapping pipeline that uses the
rank-ordered min-set-cov results to map reads to candidate genomes.

We �rst map all metagenome reads to the �rst ranked genome in the minimum metagenome cover,
and then remove successfully mapped reads from the metagenome. Remaining unmapped reads are
then mapped to the second rank genome, and this then continues until all genomes have been used.
That is, all reads mapped to the rank-1 genome in Figure 2 are removed from the rank-2 genome
mapping, and all reads mapping to rank-1 and rank-2 genomes are removed from the rank-3 genome

mapping, and so on. This produces results directly analogous to those presented in Figure 2, but for
reads rather than k-mers. This approach is implemented in the automated work�ow package
genome-grist ; see Methods for details.

Figure 5 compares k-mer assignment rates and mapping rates for the four evaluation metagenomes
in Table 1. Broadly speaking, we see that k-mer-based estimates of metagenome composition agree
closely with the number of bases covered by mapped reads: the Y axis has not been re-scaled, so k-
mer matches and read mapping coverage correspond well. This suggests that the k-mer-based min-
set-cov approach e�ectively selects reference genomes for metagenome read mapping.

For mock metagenomes (Figure 5 (A) and (B)), there is a close correspondence between mapping and
k-mer coverage, while for real metagenomes (Figure 5 (C) and (D)), mapping coverage tends to be
higher. This may be because the mock metagenomes are largely constructed from strains with known
genomes, so most 31-mers match exactly, while the gut and oil well metagenomes contain a number
of strains where only species (and not strain) genomes are present in the database, and so mapping
performs better. Further work is needed to evaluate rates of variation across a larger number of
metagenomes.

Figure 5: Hash-based k-mer decomposition of a metagenome into constituent genomes compares well to bases
covered by read mapping. Plots for each of four metagenomes showing estimated k-mer overlap per genome, along
with bases covered by read mapping, for the �rst 36 genomes in the minimum metagenome cover. The reference
genomes are rank ordered along the X axis (as in the Y axis for Figure 2), based on the largest number of hashes from
the metagenome speci�c to that genome; hence the number of hashes classi�ed for each genome (red circles) is
monotonically decreasing. The Y axis shows estimated number of k-mers classi�ed to this genome (red circles) or total
number of bases in the reference covered by mapped reads (blue stars); the numbers have not been rescaled.
Decreases in mapping (peaks in blue lines) occur for genomes which are not exact matches to the genomes of the
organisms used to build the mock community; for example, in (A), the peak at rank 33 of podar mock is for S. baltica
OS185, and represents reads that were preferentially mapped to S. baltica OS223, rank 8.

Discussion

Below, we discuss the use of FracMinHash and minimum metagenome covers to analyze
metagenome datasets.

FracMinHash provides e�cient containment queries for large
data sets.

FracMinHash is a derivative of ModHash that uses the bottom hashing concept from MinHash to
support containment operations: all elements in the set to be sketched are hashed, and any hash
values below a certain �xed boundary value are kept for the sketch. This �xed boundary value is
determined by the desired accuracy for the sketch operations, with clear space/time constraint
tradeo�s.

Intuitively, FracMinHash can be viewed as performing density sampling at a rate of 1 -mer per
distinct k-mers seen, where is used to de�ne a boundary value for the bottom sketch.
FracMinHash can also be viewed as a type of lossy compression, with a �xed compression ratio of :
for values of used here (), k-mer sets are reduced in cardinality by 1000-fold.

Unlike MinHash, FracMinHash supports containment estimation between sets of very di�erent sizes,
and here we demonstrate that it can be used e�ciently and e�ectively for compositional analysis of
shotgun metagenome data sets with k-mers. In particular, FracMinHash is competitive in accuracy
with extant MinHash-based techniques for containment analysis, while also supporting Jaccard
similarity. In addition, FracMinHash can be used to obtain point estimates of and con�dence intervals
around mutation rates and evolutionary distances; see [21] for these and other analytical results.

We note that the FracMinHash technique has been used under a number of di�erent names,
including Scaled MinHash [35,36], universe minimizers [37], Shasta markers [38], and mincode
syncmers [39]. The name FracMinHash was coined by Kristo�er Sahlin in an online discussion on
Twitter [40] and chosen by discussants as the least ambiguous option. We use it here accordingly.

FracMinHash o�ers several conveniences over MinHash. No hash is ever removed from a
FracMinHash sketch during construction; thus sketches grow proportionally to the number of distinct
k-mers in the sampled data set, but also support many operations - including all of the operations
used here - without needing to revisit the original data set. This is in contrast to MinHash, which
requires auxiliary data structures for many operations - most especially, containment operations
[23,24]. Thus FracMinHash sketches serve as compressed indices for the original content for a much
broader range of operations than MinHash.

Because FracMinHash sketches collect all hash values below a �xed threshold, they also support
streaming analysis of sketches: any operations that used a previously selected value can be cached
and updated with newly arriving values. ModHash has similar properties, but this is not the case for
MinHash: after values are selected any displacement caused by new data can invalidate previous
calculations.

FracMinHash also directly supports the addition and subtraction of hash values from a sketch,
allowing for limited types of post-processing and �ltering without revisiting the original data set. This
includes unions and intersections. Although possible for MinHash, in practice this requires
oversampling (using a larger) to account for possibly having fewer than values after �ltering,
e.g. see the approach taken in Finch [41].

When the multiplicity of hashes in the original data is retained, FracMinHash sketches can be �ltered
on abundance. This allows removing low-abundance values, as implemented in Finch [41]. Filtering

k s

s H
s

s
s s ≈ 1000

n

n n

values that only appear once was implemented in Mash by using a Bloom �lter and only adding values
after they were seen once; later versions also implemented an extra counter array to keep track of
counts for each value in the MinHash. These operations can be done in FracMinHash without auxiliary
data structures.

Another useful operation available on FracMinHash sketches is downsampling: the contiguous value
range for FracMinHash sketches means that MinHash sketches can be extracted from FracMinHash
sketches whenever the size of the requested MinHash is less than the size of the FracMinHash sketch.
Likewise, MinHash sketches can be losslessly converted to FracMinHash sketches when the maximum
hash value in the MinHash sketch is larger than .

Finally, because FracMinHash sketches are simply collections of hashes, existing hash-based k-mer
indexing approaches can be applied to sketches to support fast search with both similarity and
containment estimators; several index types, including Sequence Bloom Trees [42] and reverse
indices, are provided in the sourmash software.

In exchange for these many conveniences, FracMinHash sketches have limited sensitivity for small
data sets where the k-mer cardinality of the data set , and are only bounded in size by , which
is typically quite large . The limited sensitivity of sketches may a�ect the sensitivity of gene-
and viral genome-sized queries, but at we see comparable accuracy and sketch size to
MinHash for bacterial genome comparisons (Figure 1).

Minimum set covers can be used for accurate compositional
analysis of metagenomes.

Many metagenome content analysis approaches use reference genomes to interpret the
metagenome content, but most such approaches rely on starting with a list of reduced-redundancy
genomes from a much larger database (e.g. bioBakery 3 selects approximately 100,000 genomes [9]),
which can reduce sensitivity and precision [17]. Here, we incorporate this reduction into the overall
work�ow by searching the complete database for a minimum set of reference genomes necessary to
account for all k-mers shared between the metagenome and the database. We show that this can be
resolved e�ciently for real-world data sets; implementing a greedy min-set-cov approximation
algorithm on top of FracMinHash, we provide an approach that readily scales to 700,000 genomes on
current hardware. We show that in practice this procedure reduces the number of genomes under
consideration to for several mock and real metagenomes.

The development of a small list of relevant genomes is particularly useful for large reference
databases containing many redundant genomes; for example, in Table 1, we show that for one mock
and one real community, we select minimum metagenome covers of 19 and 99 genomes for
metagenomes that contain matches to 406k and 96k GenBank genomes total.

The min-set-cov approach for assigning genomes to metagenomes using k-mers di�ers substantially
from extant k-mer and mapping-based approaches for identifying relevant genomes. LCA-based
approaches such as Kraken label individual k-mers based on taxonomic lineages in a database, and
then use the resulting database of annotated k-mers to assign taxonomy to reads. Mapping- and
homology-based approaches such as Diamond use read mapping to genomes or read alignment to
gene sequences in order to assign taxonomy and function [43]. These approaches typically focus on
assigning individual k-mers or reads. In contrast, here we analyze the entire collection of k-mers and
assign them in aggregate to the best genome match, and then repeat until no matches remain.

H/s

≈ s H/s
≈ 2e16

s = 1000

≈ 100

The resulting minimum metagenome cover can then be used as part of further analyses, including
both taxonomic content analysis and read mapping. For taxonomic analyses, we �nd that this
approach is competitive with other current approaches and has several additional conveniences
(discussed in detail below). The comparison of hash-based estimation of containment to mapping
results in Figure 5 suggests that this approach is an accurate proxy for systematic mapping, as also
seen in Metalign [17].

There is one signi�cant drawback to assigning minimum metagenome covers based on k-mers:
because k-mers are not a perfect proxy for mapping (e.g. see Figure 5, blue lines), using k-mers to
identify the best genome for mapping may sometimes lead to inaccurate assignments. Note that long
k-mers are generally more stringent and speci�c than mapping, so e.g. 51-mer overlaps can be used
to identify some candidate genomes for mapping, but not all candidate genomes will necessarily be
found using 51-mer overlaps. The extent and impact of this kind of false negative in the min-set-cov
approach remains to be evaluated but is likely to only a�ect strain- and species-level assignments,
since nucleotide similarity measures lose sensitivity across more distant taxonomic ranks [44].

Our implementation of the min-set-cov algorithm in sourmash also readily supports using custom
reference databases as well as updating minimum metagenome covers with the addition of new
reference genomes. When updating metagenome covers with new reference genomes, the �rst stage
of calculating overlaps can be updated with the new genomes (column 2 of Table 1), while the actual
calculation of a minimum set cover must be redone each time.

Minimum set cover approaches may provide opportunities beyond those discussed here. For
example, read- and contig-based analyses, and analysis and presentation of alignments, can be
potentially simpli�ed with this approach.

Minimum metagenome covers support accurate and �exible
taxonomic assignment

We can build a taxonomic classi�er on top of minimum metagenome covers by reporting the
taxonomies of the constituent genomes, weighted by distinct overlap and aggregated at the relevant
taxonomic levels. Our CAMI-based taxonomic benchmarking shows that this approach is competitive
with several extant approaches for all metrics across all taxonomic levels (Figures 3 and 4). This
taxonomic accuracy also suggests that minimum metagenome covers themselves are likely to be
accurate, since the taxonomic assignment is built solely on the metagenome cover.

One convenient feature of this approach to taxonomic analysis is that new or changed taxonomies
can be readily incorporated by assigning them directly to genome identi�ers; the majority of the
computational work here is involved in �nding the reference genomes, which can have assignments in
multiple taxonomic frameworks. For example, sourmash already supports GTDB [45] natively, and will
also support the emerging LINS framework [46]. sourmash can also readily incorporate updates to
taxonomies, e.g. the frequent updates to the NCBI taxonomy, without requiring expensive reanalysis
of the primary metagenome data or even regenerating the minimum metagenome cover.

Interestingly, this framing of taxonomic classi�cation as a minimum set cover problem may also avoid
the loss of taxonomic resolution that a�ects k-mer- and read-based approaches on large databases
[47]; this is because we incorporate taxonomy after reads and k-mers have been assigned to
individual genomes, and choose entire genomes based on a greedy best-match-�rst approach. This
minimizes the impact of individual k-mers that may be common to a genus or family, or were mis-
assigned as a result of contamination.

Finally, as the underlying min-set-cov implementation supports custom databases, it is
straightforward to support taxonomic analysis using custom databases and/or custom taxonomic
assignments. This is potentially useful for projects that are generating many new genomes and wish
to use them for metagenome analysis. sourmash natively supports this functionality.

Our current implementation of taxonomic assignment in sourmash does not provide read-level
assignment. However, it is a straightforward (if computationally expensive) exercise to use the read
mapping approach developed in this paper to provide read-level taxonomic assignment along with
genome abundance estimation.

The minimum set cover approach is reference dependent

The min-set-cov approach is reference-based, and hence is entirely dependent on the reference
database. This may present challenges: for example, in many cases the exact reference strains
present in the metagenome will not be present in the database. This manifests in two ways - see
Figure 5. First, for real metagenomes, there is a systematic mismatch between the hash content and
the mapping content (green line), because mapping software is more permissive in the face of
variants than k-mer-based exact matching. Moreover, many of the lower rank genomes in the plot are
from the same species but di�erent strains as the higher ranked genomes, suggesting that strain-
speci�c portions of the reference are being utilized for matching at lower ranks. In reality, there will
usually be a di�erent mixture of strains in the metagenome than is present in the reference database.
Methods for updating references from metagenome data sets may provide an opportunity for
generating metagenome-speci�c references [48].

The approach presented here chooses arbitrarily between matches with equivalent numbers of
contained k-mers. There are speci�c genomic circumstances where this approach could usefully be
re�ned with additional criteria. For example, if a phage genome is present in the reference database,
and is also present within one or more genomes in the database, it may desirable to select the match
with the highest Jaccard similarity in order to choose the phage genome. This is algorithmically
straightforward to implement when desired.

In light of the strong reference dependence of the min-set-cov approach together with the
insensitivity of the FracMinHash technique, it may be useful to explore alternate methods of
summarizing the list of overlapping genomes, that is, summarizing all the genomes in column 2 of
Table 1. For example, a hierarchical approach could be taken to �rst identify the full list of overlapping
genomes using FracMinHash at a low resolution, followed by a higher resolution (but more resource
intensive) approach to identify the best matching genomes.

Opportunities for future improvement of min-set-cov

There are a number of immediate opportunities for future improvement of the min-set-cov approach.

Implementing min-set-cov on top of FracMinHash means our approach may incorrectly choose
between very closely related genomes, because the set of subsampled hashes may not discriminate
between them. Likewise, the potentially very large size of the sketches may inhibit the application of
this approach to very large metagenomes.

These limitations are not intrinsic to min-set-cov, however; any data structure supporting both the

containment and remove elements operations can be used to implement the

greedy approximation algorithm. For example, a simple set of the -mer composition of the query
supports element removal, and calculating containment can be done with regular set operations.

C(A,B) =
|A∩B|

|A|

k

Approximate membership query (AMQ) sketches like the Counting Quotient Filter [49] can also be
used, with the bene�t of reduced storage and memory usage.

In turn, this means that limitations of our current implementation, such as insensitivity to small
genomes when is approximately the same as the genome size, may be readily solvable with other
sketch types.

There are other opportunities for improving on these initial explorations. The availability of
abundance counts for each element in the FracMinHash is not well explored, since the process of
removing elements from the query does not use them. This may be important for genomes with more
repetitive content such as eukaryotic genomes. Both the multiple match as well as the abundance
counts issues can bene�t from existing solutions taken by other methods, like the species score (for
disambiguation) and Expectation-Maximization (for abundance analysis) approaches from Centrifuge
[50].

Conclusion
The FracMinHash and min-set-cov approaches explored here provide powerful and accurate
techniques for analyzing metagenomes, with well de�ned limitations. We show several immediate
applications for both taxonomic and mapping-based analysis of metagenomes. We provide an
implementation of these approaches in robust open-source software, together with work�ows to
enable their practical use on large data sets. The approaches also o�er many opportunities for further
exploration and improvement with di�erent data structures, alternative approximation algorithms,
and additional summarization approaches.

Methods
Analytical analysis of FracMinHash

Given two arbitrary sets and which are subsets of a domain , the containment index

is de�ned as . Let be a perfect hash function for some .

For a scale factor where , a FracMinHash sketch of a set is de�ned as follows:

The scale factor is a tunable parameter that can modify the size of the sketch. Using this
FracMinHash sketch, we de�ne the FracMinHash estimate of the containment index as
follows:

For notational simplicity, we de�ne . Observe that if one views as a uniformly
distributed random variable, we have that is distributed as a binomial random variable:

. Furthermore, if where both and are non-empty sets, then
 and are independent when the probability of success is strictly smaller than . Using these

notations, we compute the expectation of .

s

A B Ω C(A,B)

C(A,B) :=
|A∩B|

|A|
h h : Ω → [0,H] H ∈ R

s 0 ≤ s ≤ 1 A

FRACS(A) = {h(a) ∣ ∀a ∈ A s. t. h(a) ≤ Hs} .

s

Ĉfrac(A,B)

Ĉfrac(A,B) := .
|FRACS(A) ∩ FRACS(B)|

|FRACS(A)|

XA := |FRACS(A)| h

XA

XA ∼ Binom(|A|, s) A ∩ B ≠ ∅ A B

XA XB 1
Ĉfrac(A,B)

Theorem 1: For , if and are two distinct sets such that is non-empty,

Proof. Using the notation introduced previously, observe that

and that the random variables and are independent (which follows directly from the fact
that is non-empty, and because and are distinct, is also non-empty). We will use
the following fact from standard calculus:

Then using the moment generating function of the binomial distribution, we have

We also know by continuity that

Using these observations, we can then �nally calculate that

using Fubini’s theorem and independence.

0 < s < 1 A B A ∩ B

E [Ĉfrac(A,B)𝟙|FRACS(A)|>0] = (1 − (1 − s)|A|) .
|A ∩ B|

|A|

Ĉfrac(A,B)𝟙|FRACS(A)|>0 = 𝟙XA∩B+XA∖B>0,
XA∩B

XA∩B + XA∖B

XA∩B XA∖B

A ∩ B A B A ∖ B

∫
1

0

xtx+y−1 dt = 𝟙x+y>0.
x

x + y

E [tX
A∩B] = (1 − s + st)|A∩B|

E [tX
A∖B

] = (1 − s + st)|A∖B|.

E [XA∩B tXA∩B−1] = (1 − s + st)|A∩B|

= |A ∩ B|s(1 − s + st)|A∩B|−1.

d

dt

E [𝟙XA∩B+XA∖B>0,] = E[∫ 1

0

XA∩B tXA∩B+XA∖B−1 dt]
= ∫

1

0

E [XA∩B tXA∩B+XA∖B−1 dt]

= ∫
1

0

E [XA∩B tXA∩B−1] E [tX
A∖B

] dt

= |A ∩ B|∫
1

0

(1 − s + st)|A∩B|+|A∖B|−1 dt

= ∣∣∣

t=1

t=0

= (1 − (1 − s)|A|) ,

XA∩B

XA∩B + XA∖B

|A ∩ B|(1 − s + st)|A|

|A|

|A ∩ B|

|A|

In light of Theorem 1, we note that is not an unbiased estimate of . This may
explain the observations in [36] that show suboptimal performance for short sequences (e.g. viruses).
However, for su�ciently large and , the bias factor is su�ciently close to 1.

Hence we can de�ne:

which will have expectation

by Theorem 1.

Implementation of FracMinHash and min-set-cov

We provide implementations of FracMinHash and min-set-cov in the software package sourmash ,
which is implemented in Python and Rust and developed under the BSD license [22]. FracMinHash
sketches were created for DNA sequence inputs using the sourmash sketch dna command with
the scaled parameter. Minimum metagenome covers were generated using sourmash gather
with the sketched metagenome as query against a collection of one or more sketched genomes.

sourmash is available at github.com/sourmash-bio/sourmash. The results in this paper were
generated with sourmash v4.2.3.

Comparison between CMash, mash screen, and Scaled
MinHash.

Experiments use (except for Mash, which only supports). For Mash and
CMash they were run with to evaluate the containment estimates when using
larger sketches with sizes comparable to the FracMinHash sketches with . The truth
set is calculated using an exact -mer counter implemented with a HashSet data structure in the Rust
programming language [51]. The sourmash results were generated with sourmash search --
containment .

For Mash Screen the ratio of hashes matched by total hashes is used instead of the Containment
Score, since the latter uses a -mer survival process modeled as a Poisson process �rst introduced in
[52] and later used in the Mash distance [20] and Containment score [24] formulations.

GenBank database sketching and searches

Minimum metagenome covers were calculated using a microbial genome subset of GenBank (July
2020, 725,339 genomes) using a scaled factor of 2000 and a k-mer size of 31. Sketches for all genomes
and metagenomes were calculated with sourmash sketch dna -p scaled=2000,k=31 . The
minimum metagenome covers were calculated using all genomes sharing 50 hashes with the
metagenome (that is, an estimated overlap of 100,000 k-mers) with sourmash gather --
threshold-bp 1e5 . Overlapping sketches were saved with --save-prefetch and matches were
saved with --save-matches .

Ĉfrac(A,B) C(A,B)

|A| s (1 − (1 − s)|A|)

Cfrac(A,B) = (1 − (1 − s)|A|)−1|A ∩ B|

|A|

E[Cfrac(A,B)] =
|A ∩ B|

|A|

k = {21, 31, 51} k ≤ 32
n = {1000, 10000}

scaled = 1000
k

k

https://github.com/sourmash-bio/sourmash/

The GenBank database used is 24 GB in size and is available for download through the sourmash
project [53].

Taxonomy

The CAMI evaluations were run with the sourmash CAMI pipeline [54] against the Jan 8, 2019 RefSeq
snapshot provided by CAMI. This pipeline generated Open-community Pro�ling Assessment (OPAL)
compatible output [30]. This output was then processed with the standard CAMI tools.

Read mapping and hybrid mapping pipeline

Metagenome reads were mapped to reference genomes using minimap2 v2.17 [55] with short single-
end read mapping mode (-x sr).

The hybrid selection and mapping pipeline using the rank-ordered min-set-cov results was
implemented in the subtract_gather.py script in the genome-grist package [56].

The complete work�ow, from metagenome download to taxonomic analysis and iterative mapping, is
implemented in the genome-grist package. genome-grist uses snakemake [57] to de�ne and execute a
work�ow that combines sourmash sketching, metagenome cover calculation, and taxonomic analysis
with metagenome download from the SRA, genome download from GenBank, and read mapping. We
used genome-grist v0.7.4 [58] to generate the results in this paper; see conf-paper.yml in the
pipeline repository.

genome-grist relies on matplotlib [59], Jupyter Notebook [60], numpy [61], pandas [62], papermill,
samtools [63], bedtools [64], fastp [65], khmer [66], screed [67], seqtk [68], and sra-tools [69]. These
tools are all installed and managed in snakemake via conda [70] and bioconda [71]. genome-grist itself
is developed under the BSD 3-clause open source license, and is available at github.com/dib-
lab/genome-grist/.

Intermediate data products and �gure generation

All �gures were generated using the Jupyter Notebooks from v0.1 of the github.com/dib-lab/2021-
paper-sourmash-gather-pipeline repository [72]. This repository also contains the intermediate data
products necessary for �gure generation.

Metagenome data set accessions

The accessions for the metagenome data sets in Table 1 are:

data set SRA accession

zymo mock SRR12324253

podar mock SRR606249

gut real SRR5650070

oil well real SRR1976948

https://github.com/dib-lab/genome-grist/
file:///converted/github.com/dib-lab/2021-paper-sourmash-gather-pipeline

1.

2.

3.

4.

5.

6.

7.

8.

9.

References

A genomic catalog of Earth’s microbiomes
Stephen Nayfach, Simon Roux, Rekha Seshadri, Daniel Udwary, Neha Varghese, Frederik Schulz,
Dongying Wu, David Paez-Espino, I-Min Chen, Marcel Huntemann, … IMG/M Data Consortium
Nature Biotechnology (2020-11-09) https://doi.org/ghjh4b
DOI: 10.1038/s41587-020-0718-6 · PMID: 33169036 · PMCID: PMC8041624

Metagenomic assessment of the global diversity and distribution of bacteria and fungi
Mohammad Bahram, Tarquin Netherway, Clémence Frioux, Pamela Ferretti, Luis Pedro Coelho,
Stefan Geisen, Peer Bork, Falk Hildebrand
Environmental Microbiology (2020-12-02) https://doi.org/gjcw9f
DOI: 10.1111/1462-2920.15314 · PMID: 33185929 · PMCID: PMC7898879

The Integrative Human Microbiome Project Nature (2019-05) https://doi.org/gf3wp9
DOI: 10.1038/s41586-019-1238-8 · PMID: 31142853 · PMCID: PMC6784865

Structure and function of the global ocean microbiome
Shinichi Sunagawa, Luis Pedro Coelho, Samuel Cha�ron, Jens Roat Kultima, Karine Labadie,
Guillem Salazar, Bardya Djahanschiri, Georg Zeller, Daniel R Mende, Adriana Alberti, …
Science (2015-05-22) https://doi.org/4tr
DOI: 10.1126/science.1261359 · PMID: 25999513

Priorities for the next 10 years of human microbiome research
Lita Proctor
Nature (2019-05-29) https://doi.org/gnnprk
DOI: 10.1038/d41586-019-01654-0 · PMID: 31142863

Challenges in benchmarking metagenomic pro�lers
Zheng Sun, Shi Huang, Meng Zhang, Qiyun Zhu, Niina Haiminen, Anna Paola Carrieri, Yoshiki
Vázquez-Baeza, Laxmi Parida, Ho-Cheol Kim, Rob Knight, Yang-Yu Liu
Nature Methods (2021-05-13) https://doi.org/gj2n7w
DOI: 10.1038/s41592-021-01141-3 · PMID: 33986544 · PMCID: PMC8184642

Critical Assessment of Metagenome Interpretation - the second round of challenges
F Meyer, A Fritz, Z-L Deng, D Koslicki, A Gurevich, G Robertson, M Alser, D Antipov, F Beghini, D
Bertrand, … AC McHardy
Cold Spring Harbor Laboratory (2021-07-12) https://doi.org/gk566x
DOI: 10.1101/2021.07.12.451567

A review of methods and databases for metagenomic classi�cation and assembly
Florian P Breitwieser, Jennifer Lu, Steven L Salzberg
Brie�ngs in Bioinformatics (2019-07) https://doi.org/gdq95k
DOI: 10.1093/bib/bbx120 · PMID: 29028872 · PMCID: PMC6781581

Integrating taxonomic, functional, and strain-level pro�ling of diverse microbial
communities with bioBakery 3
Francesco Beghini, Lauren J McIver, Aitor Blanco-Míguez, Leonard Dubois, Francesco Asnicar,
Sagun Maharjan, Ana Mailyan, Paolo Manghi, Matthias Scholz, Andrew Maltez Thomas, … Nicola
Segata
eLife (2021-05-04) https://doi.org/gkc38n
DOI: 10.7554/elife.65088 · PMID: 33944776 · PMCID: PMC8096432

https://doi.org/ghjh4b
https://doi.org/10.1038/s41587-020-0718-6
https://www.ncbi.nlm.nih.gov/pubmed/33169036
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041624
https://doi.org/gjcw9f
https://doi.org/10.1111/1462-2920.15314
https://www.ncbi.nlm.nih.gov/pubmed/33185929
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898879
https://doi.org/gf3wp9
https://doi.org/10.1038/s41586-019-1238-8
https://www.ncbi.nlm.nih.gov/pubmed/31142853
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784865
https://doi.org/4tr
https://doi.org/10.1126/science.1261359
https://www.ncbi.nlm.nih.gov/pubmed/25999513
https://doi.org/gnnprk
https://doi.org/10.1038/d41586-019-01654-0
https://www.ncbi.nlm.nih.gov/pubmed/31142863
https://doi.org/gj2n7w
https://doi.org/10.1038/s41592-021-01141-3
https://www.ncbi.nlm.nih.gov/pubmed/33986544
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184642
https://doi.org/gk566x
https://doi.org/10.1101/2021.07.12.451567
https://doi.org/gdq95k
https://doi.org/10.1093/bib/bbx120
https://www.ncbi.nlm.nih.gov/pubmed/29028872
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781581
https://doi.org/gkc38n
https://doi.org/10.7554/elife.65088
https://www.ncbi.nlm.nih.gov/pubmed/33944776
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096432

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of
metagenomic long reads and contigs
Daniel H Huson, Benjamin Albrecht, Caner Bağcı, Irina Bessarab, Anna Górska, Dino Jolic, Rohan
BH Williams
Biology Direct (2018-01) https://doi.org/gnnprp
DOI: 10.1186/s13062-018-0208-7 · PMID: 29678199 · PMCID: PMC5910613

Fast and sensitive taxonomic assignment to metagenomic contigs
M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin
Bioinformatics (2021-09-15) https://doi.org/gnnprm
DOI: 10.1093/bioinformatics/btab184 · PMID: 33734313 · PMCID: PMC8479651

Microbial abundance, activity and population genomic pro�ling with mOTUs2
Alessio Milanese, Daniel R Mende, Lucas Paoli, Guillem Salazar, Hans-Joachim Ruscheweyh,
Miguelangel Cuenca, Pascal Hingamp, Renato Alves, Paul I Costea, Luis Pedro Coelho, … Shinichi
Sunagawa
Nature Communications (2019-03-04) https://doi.org/gfwktp
DOI: 10.1038/s41467-019-08844-4 · PMID: 30833550 · PMCID: PMC6399450

eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology
resource based on 5090 organisms and 2502 viruses
Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, So�a K Forslund,
Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, … Peer Bork
Nucleic Acids Research (2018-11-12) https://doi.org/gg8bdg
DOI: 10.1093/nar/gky1085 · PMID: 30418610 · PMCID: PMC6324079

Improved metagenomic analysis with Kraken 2
Derrick E Wood, Jennifer Lu, Ben Langmead
Genome Biology (2019-11-28) https://doi.org/ggfk55
DOI: 10.1186/s13059-019-1891-0 · PMID: 31779668 · PMCID: PMC6883579

Fast and sensitive taxonomic classi�cation for metagenomics with Kaiju
Peter Menzel, Kim Lee Ng, Anders Krogh
Nature Communications (2016-04-13) https://doi.org/f8h4b6
DOI: 10.1038/ncomms11257 · PMID: 27071849 · PMCID: PMC4833860

ganon: precise metagenomics classi�cation against large and up-to-date sets of
reference sequences
Vitor C Piro, Temesgen H Dadi, Enrico Seiler, Knut Reinert, Bernhard Y Renard
Bioinformatics (2020-07) https://doi.org/gnxxz8
DOI: 10.1093/bioinformatics/btaa458 · PMID: 32657362 · PMCID: PMC7355301

Metalign: e�cient alignment-based metagenomic pro�ling via containment min hash
Nathan LaPierre, Mohammed Alser, Eleazar Eskin, David Koslicki, Serghei Mangul
Genome Biology (2020-09-10) https://doi.org/ghtqrz
DOI: 10.1186/s13059-020-02159-0 · PMID: 32912225 · PMCID: PMC7488264

On the resemblance and containment of documents
AZ Broder
Institute of Electrical and Electronics Engineers (IEEE) (2002-11-22) https://doi.org/fqk7hr
DOI: 10.1109/sequen.1997.666900

A Greedy Heuristic for the Set-Covering Problem
V Chvatal
Mathematics of Operations Research (1979-08) https://doi.org/dx2gd2

https://doi.org/gnnprp
https://doi.org/10.1186/s13062-018-0208-7
https://www.ncbi.nlm.nih.gov/pubmed/29678199
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910613
https://doi.org/gnnprm
https://doi.org/10.1093/bioinformatics/btab184
https://www.ncbi.nlm.nih.gov/pubmed/33734313
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479651
https://doi.org/gfwktp
https://doi.org/10.1038/s41467-019-08844-4
https://www.ncbi.nlm.nih.gov/pubmed/30833550
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399450
https://doi.org/gg8bdg
https://doi.org/10.1093/nar/gky1085
https://www.ncbi.nlm.nih.gov/pubmed/30418610
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324079
https://doi.org/ggfk55
https://doi.org/10.1186/s13059-019-1891-0
https://www.ncbi.nlm.nih.gov/pubmed/31779668
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883579
https://doi.org/f8h4b6
https://doi.org/10.1038/ncomms11257
https://www.ncbi.nlm.nih.gov/pubmed/27071849
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833860
https://doi.org/gnxxz8
https://doi.org/10.1093/bioinformatics/btaa458
https://www.ncbi.nlm.nih.gov/pubmed/32657362
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355301
https://doi.org/ghtqrz
https://doi.org/10.1186/s13059-020-02159-0
https://www.ncbi.nlm.nih.gov/pubmed/32912225
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488264
https://doi.org/fqk7hr
https://doi.org/10.1109/sequen.1997.666900
https://doi.org/dx2gd2
https://doi.org/10.1287/moor.4.3.233

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

DOI: 10.1287/moor.4.3.233

Mash: fast genome and metagenome distance estimation using MinHash
Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey
Koren, Adam M Phillippy
Genome Biology (2016-06-20) https://doi.org/gfx74q
DOI: 10.1186/s13059-016-0997-x · PMID: 27323842 · PMCID: PMC4915045

Debiasing FracMinHash and deriving con�dence intervals for mutation rates across a
wide range of evolutionary distances
Mahmudur Rahman Hera, NTessa Pierce-Ward, David Koslicki
Cold Spring Harbor Laboratory (2022-01-14) https://doi.org/gn342h
DOI: 10.1101/2022.01.11.475870

sourmash: a library for MinHash sketching of DNA
C Titus Brown, Luiz Irber
The Journal of Open Source Software (2016-09-14) https://doi.org/ghdrk5
DOI: 10.21105/joss.00027

IMPROVING MIN HASH VIA THE CONTAINMENT INDEX WITH APPLICATIONS TO
METAGENOMIC ANALYSIS
David Koslicki, Hooman Zabeti
Cold Spring Harbor Laboratory (2017-09-04) https://doi.org/ghvn6z
DOI: 10.1101/184150

Mash Screen: high-throughput sequence containment estimation for genome discovery
Brian D Ondov, Gabriel J Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren,
Christopher B Buck, Adam M Phillippy
Genome Biology (2019-11-05) https://doi.org/ghtqmb
DOI: 10.1186/s13059-019-1841-x · PMID: 31690338 · PMCID: PMC6833257

Comparative metagenomic and rRNA microbial diversity characterization using archaeal
and bacterial synthetic communities
Migun Shakya, Christopher Quince, James H Campbell, Zamin K Yang, Christopher W Schadt,
Mircea Podar
Environmental Microbiology (2013-06) https://doi.org/f42ccr
DOI: 10.1111/1462-2920.12086 · PMID: 23387867 · PMCID: PMC3665634

Omega: an Overlap-graph de novo Assembler for Metagenomics
Bahlul Haider, Tae-Hyuk Ahn, Brian Bushnell, Juanjuan Chai, Alex Copeland, Chongle Pan
Bioinformatics (2014-10) https://doi.org/f6kt42
DOI: 10.1093/bioinformatics/btu395 · PMID: 24947750

metaSPAdes: a new versatile metagenomic assembler
Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, Pavel A Pevzner
Genome Research (2017-05) https://doi.org/f97jkv
DOI: 10.1101/gr.213959.116 · PMID: 28298430 · PMCID: PMC5411777

Evaluating Metagenome Assembly on a Simple De�ned Community with Many Strain
Variants
Sherine Awad, Luiz Irber, CTitus Brown
Cold Spring Harbor Laboratory (2017-06-25) https://doi.org/ghvn6x
DOI: 10.1101/155358

Letter-Value Plots: Boxplots for Large Data
Heike Hofmann, Hadley Wickham, Karen Kafadar

https://doi.org/10.1287/moor.4.3.233
https://doi.org/gfx74q
https://doi.org/10.1186/s13059-016-0997-x
https://www.ncbi.nlm.nih.gov/pubmed/27323842
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915045
https://doi.org/gn342h
https://doi.org/10.1101/2022.01.11.475870
https://doi.org/ghdrk5
https://doi.org/10.21105/joss.00027
https://doi.org/ghvn6z
https://doi.org/10.1101/184150
https://doi.org/ghtqmb
https://doi.org/10.1186/s13059-019-1841-x
https://www.ncbi.nlm.nih.gov/pubmed/31690338
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833257
https://doi.org/f42ccr
https://doi.org/10.1111/1462-2920.12086
https://www.ncbi.nlm.nih.gov/pubmed/23387867
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665634
https://doi.org/f6kt42
https://doi.org/10.1093/bioinformatics/btu395
https://www.ncbi.nlm.nih.gov/pubmed/24947750
https://doi.org/f97jkv
https://doi.org/10.1101/gr.213959.116
https://www.ncbi.nlm.nih.gov/pubmed/28298430
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411777
https://doi.org/ghvn6x
https://doi.org/10.1101/155358
https://doi.org/gf38v7

30.

31.

32.

33.

34.

35.

36.

37.

38.

Journal of Computational and Graphical Statistics (2017-07-03) https://doi.org/gf38v7
DOI: 10.1080/10618600.2017.1305277

Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics
software
Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes
Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, … Alice C McHardy
Nature Methods (2017-10-02) https://doi.org/gbzspt
DOI: 10.1038/nmeth.4458 · PMID: 28967888 · PMCID: PMC5903868

Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit
Fernando Meyer, Till-Robin Lesker, David Koslicki, Adrian Fritz, Alexey Gurevich, Aaron E Darling,
Alexander Sczyrba, Andreas Bremges, Alice C McHardy
Nature Protocols (2021-03-01) https://doi.org/gh77rh
DOI: 10.1038/s41596-020-00480-3 · PMID: 33649565

Assessing taxonomic metagenome pro�lers with OPAL
Fernando Meyer, Andreas Bremges, Peter Belmann, Stefan Janssen, Alice C McHardy, David
Koslicki
Genome Biology (2019-03-04) https://doi.org/gf9vbw
DOI: 10.1186/s13059-019-1646-y · PMID: 30832730 · PMCID: PMC6398228

ZymoBIOMICS Microbial Community Standards
ZYMO RESEARCH
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards

Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other
Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs
Ping Hu, Lauren Tom, Andrea Singh, Brian C Thomas, Brett J Baker, Yvette M Piceno, Gary L
Andersen, Jillian F Ban�eld
mBio (2016-03-02) https://doi.org/f8j5xr
DOI: 10.1128/mbio.01669-15 · PMID: 26787827 · PMCID: PMC4725000

Large-scale sequence comparisons with sourmash
NTessa Pierce, Luiz Irber, Taylor Reiter, Phillip Brooks, CTitus Brown
F1000Research (2019-07-04) https://doi.org/gf9v84
DOI: 10.12688/f1000research.19675.1 · PMID: 31508216 · PMCID: PMC6720031

luizirber/phd 2020.09.28
Luiz Irber, CTitus Brown, Gabriel Marcondes
Zenodo (2020-09-28) https://zenodo.org/record/4057151

Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on a
personal computer
Barış Ekim, Bonnie Berger, Rayan Chikhi
Cell Systems (2021-10) https://doi.org/gmtsjc
DOI: 10.1016/j.cels.2021.08.009 · PMID: 34525345 · PMCID: PMC8562525

Nanopore sequencing and the Shasta toolkit enable e�cient de novo assembly of eleven
human genomes
Kishwar Sha�n, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E Olsen, Colleen
Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren, … Benedict Paten
Nature Biotechnology (2020-05-04) https://doi.org/ggvsn4
DOI: 10.1038/s41587-020-0503-6 · PMID: 32686750 · PMCID: PMC7483855

https://doi.org/gf38v7
https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/gbzspt
https://doi.org/10.1038/nmeth.4458
https://www.ncbi.nlm.nih.gov/pubmed/28967888
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903868
https://doi.org/gh77rh
https://doi.org/10.1038/s41596-020-00480-3
https://www.ncbi.nlm.nih.gov/pubmed/33649565
https://doi.org/gf9vbw
https://doi.org/10.1186/s13059-019-1646-y
https://www.ncbi.nlm.nih.gov/pubmed/30832730
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398228
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards
https://doi.org/f8j5xr
https://doi.org/10.1128/mbio.01669-15
https://www.ncbi.nlm.nih.gov/pubmed/26787827
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725000
https://doi.org/gf9v84
https://doi.org/10.12688/f1000research.19675.1
https://www.ncbi.nlm.nih.gov/pubmed/31508216
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720031
https://zenodo.org/record/4057151
https://doi.org/gmtsjc
https://doi.org/10.1016/j.cels.2021.08.009
https://www.ncbi.nlm.nih.gov/pubmed/34525345
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562525
https://doi.org/ggvsn4
https://doi.org/10.1038/s41587-020-0503-6
https://www.ncbi.nlm.nih.gov/pubmed/32686750
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483855

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Syncmers are more sensitive than minimizers for selecting conserved k‑mers in
biological sequences
Robert Edgar
PeerJ (2021-02-05) https://doi.org/gm7pzp
DOI: 10.7717/peerj.10805 · PMID: 33604186 · PMCID: PMC7869670

https://twitter.com/krsahlin/status/1463169988689285125
Twitter
https://twitter.com/krsahlin/status/1463169988689285125

Finch: a tool adding dynamic abundance �ltering to genomic MinHashing
Roderick Bovee, Nick Green�eld
The Journal of Open Source Software (2018-02-01) https://doi.org/gm85dx
DOI: 10.21105/joss.00505

Fast search of thousands of short-read sequencing experiments
Brad Solomon, Carl Kingsford
Nature Biotechnology (2016-02-08) https://doi.org/f8ddk3
DOI: 10.1038/nbt.3442 · PMID: 26854477 · PMCID: PMC4804353

DIAMOND+MEGAN: Fast and Easy Taxonomic and Functional Analysis of Short and Long
Microbiome Sequences
Caner Bağcı, Sascha Patz, Daniel H Huson
Current Protocols (2021-03-03) https://doi.org/gjhfck
DOI: 10.1002/cpz1.59 · PMID: 33656283

MetaPalette: a k -mer Painting Approach for Metagenomic Taxonomic Pro�ling and
Quanti�cation of Novel Strain Variation
David Koslicki, Daniel Falush
mSystems (2016-06-28) https://doi.org/gg3gbd
DOI: 10.1128/msystems.00020-16 · PMID: 27822531 · PMCID: PMC5069763

GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically
consistent, rank normalized and complete genome-based taxonomy
Donovan H Parks, Maria Chuvochina, Christian Rinke, Aaron J Mussig, Pierre-Alain Chaumeil,
Philip Hugenholtz
Nucleic Acids Research (2022-01-07) https://doi.org/gm97d8
DOI: 10.1093/nar/gkab776 · PMID: 34520557 · PMCID: PMC8728215

A Proposal for a Genome Similarity-Based Taxonomy for Plant-Pathogenic Bacteria that
Is Su�ciently Precise to Re�ect Phylogeny, Host Range, and Outbreak A�liation Applied
to <i>Pseudomonas syringae sensu lato</i> as a Proof of Concept
Boris A Vinatzer, Alexandra J Weisberg, Caroline L Monteil, Haitham A Elmarakeby, Samuel K
Sheppard, Lenwood S Heath
Phytopathology® (2017-01) https://doi.org/gg78hd
DOI: 10.1094/phyto-07-16-0252-r · PMID: 27552324

RefSeq database growth in�uences the accuracy of k-mer-based lowest common
ancestor species identi�cation
Daniel J Nasko, Sergey Koren, Adam M Phillippy, Todd J Treangen
Genome Biology (2018-10-30) https://doi.org/ggc9db
DOI: 10.1186/s13059-018-1554-6 · PMID: 30373669 · PMCID: PMC6206640

Exploring neighborhoods in large metagenome assembly graphs using spacegraphcats
reveals hidden sequence diversity

https://doi.org/gm7pzp
https://doi.org/10.7717/peerj.10805
https://www.ncbi.nlm.nih.gov/pubmed/33604186
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869670
https://twitter.com/krsahlin/status/1463169988689285125
https://doi.org/gm85dx
https://doi.org/10.21105/joss.00505
https://doi.org/f8ddk3
https://doi.org/10.1038/nbt.3442
https://www.ncbi.nlm.nih.gov/pubmed/26854477
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804353
https://doi.org/gjhfck
https://doi.org/10.1002/cpz1.59
https://www.ncbi.nlm.nih.gov/pubmed/33656283
https://doi.org/gg3gbd
https://doi.org/10.1128/msystems.00020-16
https://www.ncbi.nlm.nih.gov/pubmed/27822531
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069763
https://doi.org/gm97d8
https://doi.org/10.1093/nar/gkab776
https://www.ncbi.nlm.nih.gov/pubmed/34520557
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728215
https://doi.org/gg78hd
https://doi.org/10.1094/phyto-07-16-0252-r
https://www.ncbi.nlm.nih.gov/pubmed/27552324
https://doi.org/ggc9db
https://doi.org/10.1186/s13059-018-1554-6
https://www.ncbi.nlm.nih.gov/pubmed/30373669
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206640

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

CTitus Brown, Dominik Moritz, Michael P O’Brien, Felix Reidl, Taylor Reiter, Blair D Sullivan
Genome Biology (2020-07-06) https://doi.org/d4bb
DOI: 10.1186/s13059-020-02066-4 · PMID: 32631445 · PMCID: PMC7336657

A General-Purpose Counting Filter
Prashant Pandey, Michael A Bender, Rob Johnson, Rob Patro
Association for Computing Machinery (ACM) (2017-05-09) https://doi.org/gg29n9
DOI: 10.1145/3035918.3035963

Centrifuge: rapid and sensitive classi�cation of metagenomic sequences
Daehwan Kim, Li Song, Florian P Breitwieser, Steven L Salzberg
Genome Research (2016-12) https://doi.org/f9fnrr
DOI: 10.1101/gr.210641.116 · PMID: 27852649 · PMCID: PMC5131823

The rust language
Nicholas D Matsakis, Felix S Klock II
ACM SIGAda Ada Letters (2014-11-26) https://doi.org/gntjvb
DOI: 10.1145/2692956.2663188

An assembly and alignment-free method of phylogeny reconstruction from next-
generation sequencing data
Huan Fan, Anthony R Ives, Yann Surget-Groba, Charles H Cannon
BMC Genomics (2015-07-14) https://doi.org/f7s6tp
DOI: 10.1186/s12864-015-1647-5 · PMID: 26169061 · PMCID: PMC4501066

Welcome to sourmash! — sourmash 4.2.4.dev8+g1c46d7a5.d20220117 documentation
https://sourmash.readthedocs.io/en/latest/

GitHub - luizirber/2020-cami: Preparing sourmash for CAMI 2 evaluations
GitHub
https://github.com/luizirber/2020-cami

Minimap2: pairwise alignment for nucleotide sequences
Heng Li
Bioinformatics (2018-09-15) https://doi.org/gdhbqt
DOI: 10.1093/bioinformatics/bty191 · PMID: 29750242 · PMCID: PMC6137996

GitHub - dib-lab/genome-grist: map Illumina metagenomes to genomes!
GitHub
https://github.com/dib-lab/genome-grist

Sustainable data analysis with Snakemake
Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-Tinch,
Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, … Johannes
Köster
F1000Research (2021-04-19) https://doi.org/gj76rq
DOI: 10.12688/f1000research.29032.2 · PMID: 34035898 · PMCID: PMC8114187

dib-lab/genome-grist: v0.7.4
CTitus Brown, Tessa Pierce Ward, Mohamed Abuelanin, Marisa Lim
Zenodo (2021-12-19) https://zenodo.org/record/5792144

Matplotlib: A 2D Graphics Environment
John D Hunter
Computing in Science & Engineering (2007) https://doi.org/drbjhg
DOI: 10.1109/mcse.2007.55

https://doi.org/d4bb
https://doi.org/10.1186/s13059-020-02066-4
https://www.ncbi.nlm.nih.gov/pubmed/32631445
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336657
https://doi.org/gg29n9
https://doi.org/10.1145/3035918.3035963
https://doi.org/f9fnrr
https://doi.org/10.1101/gr.210641.116
https://www.ncbi.nlm.nih.gov/pubmed/27852649
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131823
https://doi.org/gntjvb
https://doi.org/10.1145/2692956.2663188
https://doi.org/f7s6tp
https://doi.org/10.1186/s12864-015-1647-5
https://www.ncbi.nlm.nih.gov/pubmed/26169061
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501066
https://sourmash.readthedocs.io/en/latest/
https://github.com/luizirber/2020-cami
https://doi.org/gdhbqt
https://doi.org/10.1093/bioinformatics/bty191
https://www.ncbi.nlm.nih.gov/pubmed/29750242
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137996
https://github.com/dib-lab/genome-grist
https://doi.org/gj76rq
https://doi.org/10.12688/f1000research.29032.2
https://www.ncbi.nlm.nih.gov/pubmed/34035898
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114187
https://zenodo.org/record/5792144
https://doi.org/drbjhg
https://doi.org/10.1109/mcse.2007.55

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Jupyter Notebooks – a publishing format for reproducible computational work�ows
Thomas Kluyver, Benjamin Ragan-Kelley, Pé, Fernando Rez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, … Jupyter
Development Team
Positioning and Power in Academic Publishing: Players, Agents and Agendas (2016)
https://ebooks.iospress.nl/doi/10.3233/978-1-61499-649-1-87
DOI: 10.3233/978-1-61499-649-1-87

Array programming with NumPy
Charles R Harris, KJarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, … Travis E Oliphant
Nature (2020-09-16) https://doi.org/ghbzf2
DOI: 10.1038/s41586-020-2649-2 · PMID: 32939066 · PMCID: PMC7759461

pandas-dev/pandas: Pandas 1.4.0rc0
Je� Reback, jbrockmendel, Wes McKinney, Joris Van den Bossche, Tom Augspurger, Phillip
Cloud, Simon Hawkins, Matthew Roeschke, gfyoung, Sinhrks, … Skipper Seabold
Zenodo (2022-01-06) https://zenodo.org/record/5824773

The Sequence Alignment/Map format and SAMtools
H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin
Bioinformatics (2009-06-08) https://doi.org/�6426
DOI: 10.1093/bioinformatics/btp352 · PMID: 19505943 · PMCID: PMC2723002

BEDTools: a �exible suite of utilities for comparing genomic features
Aaron R Quinlan, Ira M Hall
Bioinformatics (2010-03-15) https://doi.org/cmrms3
DOI: 10.1093/bioinformatics/btq033 · PMID: 20110278 · PMCID: PMC2832824

fastp: an ultra-fast all-in-one FASTQ preprocessor
Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu
Bioinformatics (2018-09-01) https://doi.org/gd9mrb
DOI: 10.1093/bioinformatics/bty560 · PMID: 30423086 · PMCID: PMC6129281

khmer release v2.1: software for biological sequence analysis
Daniel Standage, Ali yari, Lisa J. Cohen, Michael R. Crusoe, Tim Head, Luiz Irber, Shannon EK
Joslin, N B. Kingsley, Kevin D. Murray, Russell Neches, … C Titus Brown
The Journal of Open Source Software (2017-07-03) https://doi.org/gntbpv
DOI: 10.21105/joss.00272

screed - short read sequence utils — screed 1.0 documentation
https://screed.readthedocs.io/en/v1.0/

GitHub - lh3/seqtk: Toolkit for processing sequences in FASTA/Q formats
GitHub
https://github.com/lh3/seqtk

GitHub - ncbi/sra-tools: SRA Tools
GitHub
https://github.com/ncbi/sra-tools

Anaconda Documentation — Anaconda documentation https://docs.anaconda.com/

Bioconda: sustainable and comprehensive software distribution for the life sciences
Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe, Christopher H
Tomkins-Tinch, Renan Valieris, Johannes Köster, The Bioconda Team

https://ebooks.iospress.nl/doi/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/ghbzf2
https://doi.org/10.1038/s41586-020-2649-2
https://www.ncbi.nlm.nih.gov/pubmed/32939066
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759461
https://zenodo.org/record/5824773
https://doi.org/ff6426
https://doi.org/10.1093/bioinformatics/btp352
https://www.ncbi.nlm.nih.gov/pubmed/19505943
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002
https://doi.org/cmrms3
https://doi.org/10.1093/bioinformatics/btq033
https://www.ncbi.nlm.nih.gov/pubmed/20110278
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832824
https://doi.org/gd9mrb
https://doi.org/10.1093/bioinformatics/bty560
https://www.ncbi.nlm.nih.gov/pubmed/30423086
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129281
https://doi.org/gntbpv
https://doi.org/10.21105/joss.00272
https://screed.readthedocs.io/en/v1.0/
https://github.com/lh3/seqtk
https://github.com/ncbi/sra-tools
https://docs.anaconda.com/
https://doi.org/gd2xzp

72.

Nature Methods (2018-07-02) https://doi.org/gd2xzp
DOI: 10.1038/s41592-018-0046-7 · PMID: 29967506

dib-lab/2021-paper-sourmash-gather-pipeline: v0.1
CTitus Brown
Zenodo (2021-12-20) https://zenodo.org/record/5793387

Appendix

1. In our current implementation in sourmash , when equivalent matches are available for a given
rank, a match is chosen at random. This is an implementation decision that is not intrinsic to the
algorithm itself.↩

https://doi.org/gd2xzp
https://doi.org/10.1038/s41592-018-0046-7
https://www.ncbi.nlm.nih.gov/pubmed/29967506
https://zenodo.org/record/5793387

