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Abstract

The identi�cation of reference genomes and taxonomic labels from metagenome data underlies many
microbiome studies. Here we describe two algorithms for compositional analysis of metagenome
sequencing data. We �rst investigate the FracMinHash sketching technique, a derivative of modulo
hash that supports Jaccard containment estimation between sets of di�erent sizes. We implement
FracMinHash in the sourmash software, evaluate its accuracy, and demonstrate large-scale
containment searches of metagenomes using 700,000 microbial reference genomes. We next frame
shotgun metagenome compositional analysis as the problem of �nding a minimum collection of
reference genomes that “cover” the known k-mers in a metagenome, a minimum set cover problem.
We implement a greedy approximate solution using FracMinHash sketches, and evaluate its accuracy
for taxonomic assignment using a CAMI community benchmark. Finally, we show that the minimum
metagenome cover can be used to guide the selection of reference genomes for read mapping.
sourmash is available as open source software under the BSD 3-Clause license at github.com/dib-
lab/sourmash/.

Introduction
Shotgun DNA sequencing of microbial communities is an important technique for studying host-
associated and environmental microbiomes [1,2]. By sampling the genomic content of microbial
communities, shotgun metagenomics enables the taxonomic and functional characterization of
microbiomes [3,4]. However, this characterization relies critically on the methods and databases used
to interpret the sequencing data [5,6,7,8].

Metagenome function and taxonomy are typically inferred from available reference genomes and
gene catalogs, via direct genomic alignment [9,10], large-scale protein search [11,12,13], or k-mer
matches [14,15]. For many of these methods, the substantial increase in the number of available
microbial reference genomes (1.1m in GenBank as of November 2021) presents a signi�cant practical
obstacle to comprehensive compositional analyses. Most methods choose representative subsets of
available genomic information to analyze; for example, bioBakery 3 provides a database containing
99.2k reference genomes [9]. Scaling metagenome analysis approaches to make use of the rapidly
increasing size of GenBank is an active endeavor in the �eld [16,17].

Here, we describe a lightweight and scalable approach to compositional analysis of shotgun
metagenome data based on �nding the minimum set of reference genomes that accounts for all
known k-mers in a metagenome - a “minimum metagenome cover”. We use a mod-hash based
sketching approach for k-mers to reduce memory requirements [18], and implement a polynomial-
time greedy approximation algorithm for the minimum set cover analysis [19].

Our approach tackles the selection of appropriate reference genomes for downstream analysis and
provides a computationally e�cient method for taxonomic classi�cation of metagenome data. Our
implementation in the sourmash  open source software package works with reference databases
containing a million or more microbial genomes and supports multiple taxonomies and private
databases.

Results
We �rst describe FracMinHash, a sketching technique that supports containment and overlap
estimation for DNA sequencing datasets using k-mers. We next frame reference-based metagenome
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content analysis as the problem of �nding a minimum set cover for a metagenome using a collection
of reference genomes. We then evaluate the accuracy of this approach using a taxonomic
classi�cation benchmark. Finally, we demonstrate the utility of this approach by using the genomes
from the minimum metagenome cover as reference genomes for read mapping.

FracMinHash sketches support accurate containment
operations

We de�ne the fractional MinHash, or FracMinHash as follows: for a hash function , on
an input set of hash values  and for any ,

where  is the largest possible value in the domain of  and  is the maximum hash value
allowed in the FracMinHash sketch.

The FracMinHash is a mix of MinHash and ModHash [18,20]. It keeps the selection of the smallest
elements from MinHash, while using the dynamic size from ModHash to allow containment
estimation. However, instead of taking  elements like , a FracMinHash uses
the parameter  to select a subset of .

Like ModHash (but not MinHash), FracMinHash supports estimation of the containment index:

See Methods for details.

Given a uniform hash function  and , the cardinalities of  and 
converge for large . The main di�erence is the range of possible values in the hash space, since
the FracMinHash range is contiguous and the ModHash range is not. This permits a variety of
convenient operations on the sketches, including iterative downsampling of FracMinHash sketches as
well as conversion to MinHash sketches. Beyond accurate containment operations, FracMinHash can
be used to estimate evolutionary distance between pairs of sequences undergoing a mutation model,
similar to but more accurately than the MinHash derived method in [20]. See [21] for these and other
analytical details.

A FracMinHash implementation accurately estimates
containment between sets of di�erent sizes

We compare the FracMinHash method, implemented in the sourmash software [22], to Containment
MinHash [23] and Mash Screen (Containment Score) [24] for containment queries in data from the 
podar mock  community, a mock bacterial and archaeal community where the reference genomes

are largely known [25]; see also Table 1, row 2. This data set has been used in several methods
evaluations [24,26,27,28].
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Figure 1:  Letter-value plot [29] of the di�erences from containment estimate to ground truth (exact). Each
method is evaluated for , except for Mash  with , which is unsupported.

Figure 1 shows containment analysis of genomes in this metagenome, with low-coverage and
contaminant genomes (as described in [28] and [24]) removed from the database. All methods are
within 1% of the exact containment on average (Figure 1), with CMash  consistently underestimating
the containment. Mash Screen  with  has the smallest di�erence to ground truth for 

, followed by FracMinHash  with scaled=1000  and Mash Screen  with .
The sourmash sketch sizes varied between 431 hashes and 9540 hashes, with a median of 2741
hashes.

FracMinHash can be used to construct a minimum set cover for
metagenomes

We next ask: what is the smallest collection of genomes in a database that contains all of the known k-
mers in a metagenome? Formally, for a given metagenome  and a reference database , what is
the minimum collection of genomes in  which contain all of the k-mers in the intersection of  and 

? We wish to �nd the smallest set  of genomes in  such that, for the k-mer decomposition 
,

This is a minimum set covering problem, for which there is a polynomial-time approximation [19]:

1. Initialize 
2. While  is nonempty:

k = {21, 31, 51} k = 51

n = 10000
k = {21, 31} n = 1000

M D
D D

M {Gn} D

k()

k(M) ∩ k(D) = ⋃
n

{k(M) ∩ k(Gn)}

C ← ∅
k(M) ∩ k(D) ∖ ⋃G∈C(k(M) ∩ k(G))



3. 
4. return 

This greedy algorithm iteratively chooses reference genomes from  in order of largest remaining
overlap with , where overlap is in terms of number of k-mers. This results in a progressive
classi�cation of the known k-mers in the metagenome to speci�c genomes.1 Note it is classically
known that this greedy heuristic results in a logarithmic approximation factor to the optimal set cover
solution [19]. This algorithm is implemented as sourmash gather .

In Figure 2, we show an example of this progressive classi�cation of 31-mers by matching GenBank
genome for podar mock . The matching genomes are provided in the order found by the greedy
algorithm, i.e. by overlap with remaining k-mers in the metagenome. The high rank (early) matches
re�ect large and/or mostly-covered genomes with high containment, while later matches re�ect
genomes that share fewer k-mers with the remaining set of k-mers in the metagenome - smaller
genomes, less-covered genomes, and/or genomes with substantial overlap with earlier matches.
Where there are overlaps between genomes, shared common k-mers are “claimed” by higher rank
matches and only k-mer content speci�c to the later genome is used to �nd lower rank matches.

As one example of metagenome k-mers shared with multiple matches, genomes from two strains of
Shewanella baltica are present in the mock metagenome. These genomes overlap in k-mer content by
approximately 50%, and these shared k-mers are �rst claimed by Shewanella baltica OS223 – compare
S. baltica OS223, rank 8, with S. baltica OS185, rank 33 in Figure 2. Here the di�erence between the
green triangles (all matched k-mers) and red circles (min-set-cov matched k-mers) for S. baltica OS185
represents the k-mers claimed by S. baltica OS223 .

For this mock metagenome, 205m (54.8%) of 375m k-mers were found in GenBank (see Table 1, row
2). The remaining 169m (45.2%) k-mers had no matches, and represent either k-mers introduced by
sequencing errors or k-mers from real but unknown community members.

C ← C ⋃ {arg maxG∈D |k(G) ∪ (k(M) ∩ k(D) ∖ ⋃G∈C(k(M) ∪ k(G)))|}
C

D
M



Figure 2:  K-mer decomposition of a metagenome into constituent genomes. A rank ordering by remaining
containment for the �rst 36 genomes from the minimum metagenome cover of the podar mock  synthetic
metagenome [25], calculated using 700,000 genomes from GenBank with scaled=2000, k=31. The Y axis is labeled with
the NCBI-designated name of the genome. In the left plot, the X axis represents the estimated number of k-mers shared
between each genome and the metagenome. The red circles indicate the number of matching k-mers that were not
matched at previous ranks, while the green triangle symbols indicate all matching k-mers. In the right plot, the X axis
represents the estimated k-mer coverage of that genome. The red circles indicate the percentage of the genome
covered by k-mers remaining at that rank, while the green triangles indicate overlap between the genome and the entire
metagenome, including those already assigned at previous ranks.

Minimum metagenome covers can accurately estimate
taxonomic composition

We evaluated the accuracy of min-set-cov for metagenome decomposition using benchmarks from
the Critical Assessment of Metagenome Interpretation (CAMI), a community-driven initiative for
reproducibly benchmarking metagenomic methods [30]. We used the mouse gut metagenome
dataset [31], in which a simulated mouse gut metagenome (MGM) was derived from 791 bacterial and
archaeal genomes, representing 8 phyla, 18 classes, 26 orders, 50 families, 157 genera, and 549
species. Sixty-four samples were generated with CAMISIM, with 91.8 genomes present in each sample
on average. Each sample is 5 GB in size, and both short-read (Illumina) and long-read (PacBio)
simulated sequencing data is available.

Since min-set-cov yields only a collection of genomes, this collection must be converted into a
taxonomy with relative abundances for benchmarking with CAMI. We developed the following



procedure for generating a taxonomic pro�le from a given metagenome cover. For each genome
match, we note the species designation in the NCBI taxonomy for that genome. Then, we calculate the
fraction of the genome remaining in the metagenome after k-mers belonging to higher-rank genomes
have been removed (i.e. red circles in Figure 2 (a)). We multiply this fraction by the median abundance
of the hashes in the sketch to weight the contribution of the genome’s species designation to the
metagenome taxonomy. This procedure produces an estimate of that species’ taxonomic contribution
to the metagenome, normalized by the genome size.

Figure 3:  Comparison per taxonomic rank of methods in terms of completeness, purity (1% �ltered), and L1 norm.

Figure 4:  Methods rankings and scores obtained for the di�erent metrics over all samples and taxonomic ranks. For
score calculation, all metrics were weighted equally. A scaled value of 2000 and a k-mer size of 31 was used.

In Figures 3 and 4 we show an updated version of Figure 6 from [31] that includes our method,
implemented in the sourmash  software and benchmarked using OPAL [32]. The minimum
metagenome cover was calculated against the Jan 8, 2019 snapshot of RefSeq provided by the CAMI
project. Here we compare 10 di�erent methods for taxonomic pro�ling and their characteristics at
each taxonomic rank. While previous methods show reduced completeness – the ratio of taxa
correctly identi�ed in the ground truth – below the genus level, sourmash  can reach 88.7%
completeness at the species level with the highest purity (the ratio of correctly predicted taxa over all
predicted taxa) across all methods: 95.9% when �ltering predictions below 1% abundance, and 97%
for un�ltered results. sourmash  also has the second lowest L1-norm error, the highest number of
true positives and the lowest number of false positives.



Minimum metagenome covers select small subsets of large
databases

Table 1:  Four metagenomes and the number of genomes in the estimated minimum metagenome cover from
GenBank, with scaled=2000 and k=31. Overlap and % 31-mers identi�ed are estimated from FracMinHash sketch size.

data set genomes >= 100k 31-mer
overlap size of min-set-cov % 31-mers identi�ed

zymo mock 405,839 19 47.1%

podar mock 5,800 74 54.8%

gut real 96,423 99 36.0%

oil well real 1,235 135 14.9%

In Table 1, we show the minimum metagenome cover for four metagenomes against GenBank - two
mock communities [25,33], a human gut microbiome data set from iHMP [3], and an oil well sample
[34]. Our implementation provides estimates for both the total number of genomes with substantial
overlap to a query genome, and the minimum set of genomes that account for k-mers with overlap in
the query metagenome. Note that only matches estimated to have more than 100,000 overlapping k-
mers are shown (see Methods for details).

We �nd many genomes with overlaps for each metagenome, due to the redundancy of the reference
database. For example, zymo mock  contains a Salmonella genome, and there are over 200,000
Salmonella genomes that match to it in GenBank. Likewise, gut real  matches to over 75,000 E. coli
genomes in GenBank. Since neither podar mock  nor oil well real  contain genomes from
species with substantial representation in GenBank, they yield many fewer total overlapping
genomes.

Regardless of the number of genomes in the database with substantial overlap, the estimated
minimum collection of genomes is always much smaller than the number of genomes with overlaps.
In the cases where the k-mers in the metagenome are mostly identi�ed, this is because of database
redundancy: e.g. in the case of zymo mock , the min-set-cov algorithm chooses precisely one
Salmonella genome from the 200,000+ available. Conversely, in the case of oil well real , much
of the sample is not identi�ed, suggesting that the small size of the covering set is because much of
the sample is not represented in the database.

Minimum metagenome covers provide representative
genomes for mapping

Mapping metagenome reads to representative genomes is an important step in many microbiome
analysis pipelines, but mapping approaches struggle with large, redundant databases [16,17]. One
speci�c use for a minimum metagenome cover could be to select a small set of representative
genomes for mapping. We therefore developed a hybrid selection and mapping pipeline that uses the
rank-ordered min-set-cov results to map reads to candidate genomes.

We �rst map all metagenome reads to the �rst ranked genome in the minimum metagenome cover,
and then remove successfully mapped reads from the metagenome. Remaining unmapped reads are
then mapped to the second rank genome, and this then continues until all genomes have been used.
That is, all reads mapped to the rank-1 genome in Figure 2 are removed from the rank-2 genome
mapping, and all reads mapping to rank-1 and rank-2 genomes are removed from the rank-3 genome



mapping, and so on. This produces results directly analogous to those presented in Figure 2, but for
reads rather than k-mers. This approach is implemented in the automated work�ow package 
genome-grist ; see Methods for details.

Figure 5 compares k-mer assignment rates and mapping rates for the four evaluation metagenomes
in Table 1. Broadly speaking, we see that k-mer-based estimates of metagenome composition agree
closely with the number of bases covered by mapped reads: the Y axis has not been re-scaled, so k-
mer matches and read mapping coverage correspond well. This suggests that the k-mer-based min-
set-cov approach e�ectively selects reference genomes for metagenome read mapping.

For mock metagenomes (Figure 5 (A) and (B)), there is a close correspondence between mapping and
k-mer coverage, while for real metagenomes (Figure 5 (C) and (D)), mapping coverage tends to be
higher. This may be because the mock metagenomes are largely constructed from strains with known
genomes, so most 31-mers match exactly, while the gut and oil well metagenomes contain a number
of strains where only species (and not strain) genomes are present in the database, and so mapping
performs better. Further work is needed to evaluate rates of variation across a larger number of
metagenomes.

Figure 5:  Hash-based k-mer decomposition of a metagenome into constituent genomes compares well to bases
covered by read mapping. Plots for each of four metagenomes showing estimated k-mer overlap per genome, along
with bases covered by read mapping, for the �rst 36 genomes in the minimum metagenome cover. The reference
genomes are rank ordered along the X axis (as in the Y axis for Figure 2), based on the largest number of hashes from
the metagenome speci�c to that genome; hence the number of hashes classi�ed for each genome (red circles) is
monotonically decreasing. The Y axis shows estimated number of k-mers classi�ed to this genome (red circles) or total
number of bases in the reference covered by mapped reads (blue stars); the numbers have not been rescaled.
Decreases in mapping (peaks in blue lines) occur for genomes which are not exact matches to the genomes of the
organisms used to build the mock community; for example, in (A), the peak at rank 33 of podar mock  is for S. baltica
OS185, and represents reads that were preferentially mapped to S. baltica OS223, rank 8.

Discussion



Below, we discuss the use of FracMinHash and minimum metagenome covers to analyze
metagenome datasets.

FracMinHash provides e�cient containment queries for large
data sets.

FracMinHash is a derivative of ModHash that uses the bottom hashing concept from MinHash to
support containment operations: all elements in the set to be sketched are hashed, and any hash
values below a certain �xed boundary value are kept for the sketch. This �xed boundary value is
determined by the desired accuracy for the sketch operations, with clear space/time constraint
tradeo�s.

Intuitively, FracMinHash can be viewed as performing density sampling at a rate of 1 -mer per 
distinct k-mers seen, where  is used to de�ne a boundary value  for the bottom sketch.
FracMinHash can also be viewed as a type of lossy compression, with a �xed compression ratio of :
for values of  used here ( ), k-mer sets are reduced in cardinality by 1000-fold.

Unlike MinHash, FracMinHash supports containment estimation between sets of very di�erent sizes,
and here we demonstrate that it can be used e�ciently and e�ectively for compositional analysis of
shotgun metagenome data sets with k-mers. In particular, FracMinHash is competitive in accuracy
with extant MinHash-based techniques for containment analysis, while also supporting Jaccard
similarity. In addition, FracMinHash can be used to obtain point estimates of and con�dence intervals
around mutation rates and evolutionary distances; see [21] for these and other analytical results.

We note that the FracMinHash technique has been used under a number of di�erent names,
including Scaled MinHash [35,36], universe minimizers [37], Shasta markers [38], and mincode
syncmers [39]. The name FracMinHash was coined by Kristo�er Sahlin in an online discussion on
Twitter [40] and chosen by discussants as the least ambiguous option. We use it here accordingly.

FracMinHash o�ers several conveniences over MinHash. No hash is ever removed from a
FracMinHash sketch during construction; thus sketches grow proportionally to the number of distinct
k-mers in the sampled data set, but also support many operations - including all of the operations
used here - without needing to revisit the original data set. This is in contrast to MinHash, which
requires auxiliary data structures for many operations - most especially, containment operations
[23,24]. Thus FracMinHash sketches serve as compressed indices for the original content for a much
broader range of operations than MinHash.

Because FracMinHash sketches collect all hash values below a �xed threshold, they also support
streaming analysis of sketches: any operations that used a previously selected value can be cached
and updated with newly arriving values. ModHash has similar properties, but this is not the case for
MinHash: after  values are selected any displacement caused by new data can invalidate previous
calculations.

FracMinHash also directly supports the addition and subtraction of hash values from a sketch,
allowing for limited types of post-processing and �ltering without revisiting the original data set. This
includes unions and intersections. Although possible for MinHash, in practice this requires
oversampling (using a larger ) to account for possibly having fewer than  values after �ltering,
e.g. see the approach taken in Finch [41].

When the multiplicity of hashes in the original data is retained, FracMinHash sketches can be �ltered
on abundance. This allows removing low-abundance values, as implemented in Finch [41]. Filtering
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s
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values that only appear once was implemented in Mash by using a Bloom �lter and only adding values
after they were seen once; later versions also implemented an extra counter array to keep track of
counts for each value in the MinHash. These operations can be done in FracMinHash without auxiliary
data structures.

Another useful operation available on FracMinHash sketches is downsampling: the contiguous value
range for FracMinHash sketches means that MinHash sketches can be extracted from FracMinHash
sketches whenever the size of the requested MinHash is less than the size of the FracMinHash sketch.
Likewise, MinHash sketches can be losslessly converted to FracMinHash sketches when the maximum
hash value in the MinHash sketch is larger than .

Finally, because FracMinHash sketches are simply collections of hashes, existing hash-based k-mer
indexing approaches can be applied to sketches to support fast search with both similarity and
containment estimators; several index types, including Sequence Bloom Trees [42] and reverse
indices, are provided in the sourmash software.

In exchange for these many conveniences, FracMinHash sketches have limited sensitivity for small
data sets where the k-mer cardinality of the data set , and are only bounded in size by , which
is typically quite large . The limited sensitivity of sketches may a�ect the sensitivity of gene-
and viral genome-sized queries, but at  we see comparable accuracy and sketch size to
MinHash for bacterial genome comparisons (Figure 1).

Minimum set covers can be used for accurate compositional
analysis of metagenomes.

Many metagenome content analysis approaches use reference genomes to interpret the
metagenome content, but most such approaches rely on starting with a list of reduced-redundancy
genomes from a much larger database (e.g. bioBakery 3 selects approximately 100,000 genomes [9]),
which can reduce sensitivity and precision [17]. Here, we incorporate this reduction into the overall
work�ow by searching the complete database for a minimum set of reference genomes necessary to
account for all k-mers shared between the metagenome and the database. We show that this can be
resolved e�ciently for real-world data sets; implementing a greedy min-set-cov approximation
algorithm on top of FracMinHash, we provide an approach that readily scales to 700,000 genomes on
current hardware. We show that in practice this procedure reduces the number of genomes under
consideration to  for several mock and real metagenomes.

The development of a small list of relevant genomes is particularly useful for large reference
databases containing many redundant genomes; for example, in Table 1, we show that for one mock
and one real community, we select minimum metagenome covers of 19 and 99 genomes for
metagenomes that contain matches to 406k and 96k GenBank genomes total.

The min-set-cov approach for assigning genomes to metagenomes using k-mers di�ers substantially
from extant k-mer and mapping-based approaches for identifying relevant genomes. LCA-based
approaches such as Kraken label individual k-mers based on taxonomic lineages in a database, and
then use the resulting database of annotated k-mers to assign taxonomy to reads. Mapping- and
homology-based approaches such as Diamond use read mapping to genomes or read alignment to
gene sequences in order to assign taxonomy and function [43]. These approaches typically focus on
assigning individual k-mers or reads. In contrast, here we analyze the entire collection of k-mers and
assign them in aggregate to the best genome match, and then repeat until no matches remain.

H/s

≈ s H/s
≈ 2e16

s = 1000

≈ 100



The resulting minimum metagenome cover can then be used as part of further analyses, including
both taxonomic content analysis and read mapping. For taxonomic analyses, we �nd that this
approach is competitive with other current approaches and has several additional conveniences
(discussed in detail below). The comparison of hash-based estimation of containment to mapping
results in Figure 5 suggests that this approach is an accurate proxy for systematic mapping, as also
seen in Metalign [17].

There is one signi�cant drawback to assigning minimum metagenome covers based on k-mers:
because k-mers are not a perfect proxy for mapping (e.g. see Figure 5, blue lines), using k-mers to
identify the best genome for mapping may sometimes lead to inaccurate assignments. Note that long
k-mers are generally more stringent and speci�c than mapping, so e.g. 51-mer overlaps can be used
to identify some candidate genomes for mapping, but not all candidate genomes will necessarily be
found using 51-mer overlaps. The extent and impact of this kind of false negative in the min-set-cov
approach remains to be evaluated but is likely to only a�ect strain- and species-level assignments,
since nucleotide similarity measures lose sensitivity across more distant taxonomic ranks [44].

Our implementation of the min-set-cov algorithm in sourmash also readily supports using custom
reference databases as well as updating minimum metagenome covers with the addition of new
reference genomes. When updating metagenome covers with new reference genomes, the �rst stage
of calculating overlaps can be updated with the new genomes (column 2 of Table 1), while the actual
calculation of a minimum set cover must be redone each time.

Minimum set cover approaches may provide opportunities beyond those discussed here. For
example, read- and contig-based analyses, and analysis and presentation of alignments, can be
potentially simpli�ed with this approach.

Minimum metagenome covers support accurate and �exible
taxonomic assignment

We can build a taxonomic classi�er on top of minimum metagenome covers by reporting the
taxonomies of the constituent genomes, weighted by distinct overlap and aggregated at the relevant
taxonomic levels. Our CAMI-based taxonomic benchmarking shows that this approach is competitive
with several extant approaches for all metrics across all taxonomic levels (Figures 3 and 4). This
taxonomic accuracy also suggests that minimum metagenome covers themselves are likely to be
accurate, since the taxonomic assignment is built solely on the metagenome cover.

One convenient feature of this approach to taxonomic analysis is that new or changed taxonomies
can be readily incorporated by assigning them directly to genome identi�ers; the majority of the
computational work here is involved in �nding the reference genomes, which can have assignments in
multiple taxonomic frameworks. For example, sourmash already supports GTDB [45] natively, and will
also support the emerging LINS framework [46]. sourmash can also readily incorporate updates to
taxonomies, e.g. the frequent updates to the NCBI taxonomy, without requiring expensive reanalysis
of the primary metagenome data or even regenerating the minimum metagenome cover.

Interestingly, this framing of taxonomic classi�cation as a minimum set cover problem may also avoid
the loss of taxonomic resolution that a�ects k-mer- and read-based approaches on large databases
[47]; this is because we incorporate taxonomy after reads and k-mers have been assigned to
individual genomes, and choose entire genomes based on a greedy best-match-�rst approach. This
minimizes the impact of individual k-mers that may be common to a genus or family, or were mis-
assigned as a result of contamination.



Finally, as the underlying min-set-cov implementation supports custom databases, it is
straightforward to support taxonomic analysis using custom databases and/or custom taxonomic
assignments. This is potentially useful for projects that are generating many new genomes and wish
to use them for metagenome analysis. sourmash natively supports this functionality.

Our current implementation of taxonomic assignment in sourmash does not provide read-level
assignment. However, it is a straightforward (if computationally expensive) exercise to use the read
mapping approach developed in this paper to provide read-level taxonomic assignment along with
genome abundance estimation.

The minimum set cover approach is reference dependent

The min-set-cov approach is reference-based, and hence is entirely dependent on the reference
database. This may present challenges: for example, in many cases the exact reference strains
present in the metagenome will not be present in the database. This manifests in two ways - see
Figure 5. First, for real metagenomes, there is a systematic mismatch between the hash content and
the mapping content (green line), because mapping software is more permissive in the face of
variants than k-mer-based exact matching. Moreover, many of the lower rank genomes in the plot are
from the same species but di�erent strains as the higher ranked genomes, suggesting that strain-
speci�c portions of the reference are being utilized for matching at lower ranks. In reality, there will
usually be a di�erent mixture of strains in the metagenome than is present in the reference database.
Methods for updating references from metagenome data sets may provide an opportunity for
generating metagenome-speci�c references [48].

The approach presented here chooses arbitrarily between matches with equivalent numbers of
contained k-mers. There are speci�c genomic circumstances where this approach could usefully be
re�ned with additional criteria. For example, if a phage genome is present in the reference database,
and is also present within one or more genomes in the database, it may desirable to select the match
with the highest Jaccard similarity in order to choose the phage genome. This is algorithmically
straightforward to implement when desired.

In light of the strong reference dependence of the min-set-cov approach together with the
insensitivity of the FracMinHash technique, it may be useful to explore alternate methods of
summarizing the list of overlapping genomes, that is, summarizing all the genomes in column 2 of
Table 1. For example, a hierarchical approach could be taken to �rst identify the full list of overlapping
genomes using FracMinHash at a low resolution, followed by a higher resolution (but more resource
intensive) approach to identify the best matching genomes.

Opportunities for future improvement of min-set-cov

There are a number of immediate opportunities for future improvement of the min-set-cov approach.

Implementing min-set-cov on top of FracMinHash means our approach may incorrectly choose
between very closely related genomes, because the set of subsampled hashes may not discriminate
between them. Likewise, the potentially very large size of the sketches may inhibit the application of
this approach to very large metagenomes.

These limitations are not intrinsic to min-set-cov, however; any data structure supporting both the

containment  and remove elements operations can be used to implement the

greedy approximation algorithm. For example, a simple set of the -mer composition of the query
supports element removal, and calculating containment can be done with regular set operations.

C(A,B) =
|A∩B|

|A|

k



Approximate membership query (AMQ) sketches like the Counting Quotient Filter [49] can also be
used, with the bene�t of reduced storage and memory usage.

In turn, this means that limitations of our current implementation, such as insensitivity to small
genomes when  is approximately the same as the genome size, may be readily solvable with other
sketch types.

There are other opportunities for improving on these initial explorations. The availability of
abundance counts for each element in the FracMinHash is not well explored, since the process of
removing elements from the query does not use them. This may be important for genomes with more
repetitive content such as eukaryotic genomes. Both the multiple match as well as the abundance
counts issues can bene�t from existing solutions taken by other methods, like the species score (for
disambiguation) and Expectation-Maximization (for abundance analysis) approaches from Centrifuge
[50].

Conclusion
The FracMinHash and min-set-cov approaches explored here provide powerful and accurate
techniques for analyzing metagenomes, with well de�ned limitations. We show several immediate
applications for both taxonomic and mapping-based analysis of metagenomes. We provide an
implementation of these approaches in robust open-source software, together with work�ows to
enable their practical use on large data sets. The approaches also o�er many opportunities for further
exploration and improvement with di�erent data structures, alternative approximation algorithms,
and additional summarization approaches.

Methods
Analytical analysis of FracMinHash

Given two arbitrary sets  and  which are subsets of a domain , the containment index 

is de�ned as . Let  be a perfect hash function  for some .

For a scale factor  where , a FracMinHash sketch of a set  is de�ned as follows:

The scale factor  is a tunable parameter that can modify the size of the sketch. Using this
FracMinHash sketch, we de�ne the FracMinHash estimate of the containment index  as
follows:

For notational simplicity, we de�ne . Observe that if one views  as a uniformly
distributed random variable, we have that  is distributed as a binomial random variable: 

. Furthermore, if  where both  and  are non-empty sets, then 
 and  are independent when the probability of success is strictly smaller than . Using these

notations, we compute the expectation of .

s

A B Ω C(A,B)

C(A,B) :=
|A∩B|

|A|
h h  :  Ω →  [0,H] H ∈ R

s 0 ≤ s ≤ 1 A

FRACS(A) = {h(a) ∣ ∀a ∈ A s. t. h(a) ≤ Hs} .

s

Ĉfrac(A,B)

Ĉfrac(A,B) := .
|FRACS(A) ∩ FRACS(B)|

|FRACS(A)|

XA := |FRACS(A)| h

XA

XA ∼ Binom(|A|, s) A ∩ B ≠ ∅ A B

XA XB 1
Ĉfrac(A,B)



Theorem 1: For , if  and  are two distinct sets such that  is non-empty,

Proof. Using the notation introduced previously, observe that

and that the random variables  and  are independent (which follows directly from the fact
that  is non-empty, and because  and  are distinct,  is also non-empty). We will use
the following fact from standard calculus:

Then using the moment generating function of the binomial distribution, we have

We also know by continuity that

Using these observations, we can then �nally calculate that

using Fubini’s theorem and independence.

0 < s < 1 A B A ∩ B

E [Ĉfrac(A,B)𝟙|FRACS(A)|>0] = (1 − (1 − s)|A|) .
|A ∩ B|

|A|

Ĉfrac(A,B)𝟙|FRACS(A)|>0 = 𝟙XA∩B+XA∖B>0,
XA∩B

XA∩B + XA∖B

XA∩B XA∖B

A ∩ B A B A ∖ B

∫
1

0

xtx+y−1 dt = 𝟙x+y>0.
x

x + y

E [tX
A∩B] = (1 − s + st)|A∩B|

E [tX
A∖B

] = (1 − s + st)|A∖B|.

E [XA∩B tXA∩B−1] = (1 − s + st)|A∩B|

= |A ∩ B|s(1 − s + st)|A∩B|−1.

d

dt

E [ 𝟙XA∩B+XA∖B>0, ] = E[∫ 1

0

XA∩B tXA∩B+XA∖B−1 dt]
= ∫

1

0

E [XA∩B tXA∩B+XA∖B−1 dt]

= ∫
1

0

E [XA∩B tXA∩B−1] E [tX
A∖B

] dt

= |A ∩ B|∫
1

0

(1 − s + st)|A∩B|+|A∖B|−1 dt

= ∣∣∣

t=1

t=0

= (1 − (1 − s)|A|) ,

XA∩B

XA∩B + XA∖B

|A ∩ B|(1 − s + st)|A|

|A|

|A ∩ B|

|A|



In light of Theorem 1, we note that  is not an unbiased estimate of . This may
explain the observations in [36] that show suboptimal performance for short sequences (e.g. viruses).
However, for su�ciently large  and , the bias factor  is su�ciently close to 1.

Hence we can de�ne:

which will have expectation

by Theorem 1.

Implementation of FracMinHash and min-set-cov

We provide implementations of FracMinHash and min-set-cov in the software package sourmash ,
which is implemented in Python and Rust and developed under the BSD license [22]. FracMinHash
sketches were created for DNA sequence inputs using the sourmash sketch dna  command with
the scaled  parameter. Minimum metagenome covers were generated using sourmash gather
with the sketched metagenome as query against a collection of one or more sketched genomes.

sourmash is available at github.com/sourmash-bio/sourmash. The results in this paper were
generated with sourmash v4.2.3.

Comparison between CMash, mash screen, and Scaled
MinHash.

Experiments use  (except for Mash, which only supports ). For Mash and
CMash they were run with  to evaluate the containment estimates when using
larger sketches with sizes comparable to the FracMinHash sketches with . The truth
set is calculated using an exact -mer counter implemented with a HashSet data structure in the Rust
programming language [51]. The sourmash results were generated with sourmash search --
containment .

For Mash Screen the ratio of hashes matched by total hashes is used instead of the Containment
Score, since the latter uses a -mer survival process modeled as a Poisson process �rst introduced in
[52] and later used in the Mash distance [20] and Containment score [24] formulations.

GenBank database sketching and searches

Minimum metagenome covers were calculated using a microbial genome subset of GenBank (July
2020, 725,339 genomes) using a scaled factor of 2000 and a k-mer size of 31. Sketches for all genomes
and metagenomes were calculated with sourmash sketch dna -p scaled=2000,k=31 . The
minimum metagenome covers were calculated using all genomes sharing 50 hashes with the
metagenome (that is, an estimated overlap of 100,000 k-mers) with sourmash gather --
threshold-bp 1e5 . Overlapping sketches were saved with --save-prefetch  and matches were
saved with --save-matches .

Ĉfrac(A,B) C(A,B)

|A| s (1 − (1 − s)|A|)

Cfrac(A,B) = (1 − (1 − s)|A|)−1|A ∩ B|

|A|

E[Cfrac(A,B)] =
|A ∩ B|

|A|

k = {21, 31, 51} k ≤ 32
n = {1000, 10000}

scaled = 1000
k

k

https://github.com/sourmash-bio/sourmash/


The GenBank database used is 24 GB in size and is available for download through the sourmash
project [53].

Taxonomy

The CAMI evaluations were run with the sourmash CAMI pipeline [54] against the Jan 8, 2019 RefSeq
snapshot provided by CAMI. This pipeline generated Open-community Pro�ling Assessment (OPAL)
compatible output [30]. This output was then processed with the standard CAMI tools.

Read mapping and hybrid mapping pipeline

Metagenome reads were mapped to reference genomes using minimap2 v2.17 [55] with short single-
end read mapping mode ( -x sr ).

The hybrid selection and mapping pipeline using the rank-ordered min-set-cov results was
implemented in the subtract_gather.py  script in the genome-grist package [56].

The complete work�ow, from metagenome download to taxonomic analysis and iterative mapping, is
implemented in the genome-grist package. genome-grist uses snakemake [57] to de�ne and execute a
work�ow that combines sourmash sketching, metagenome cover calculation, and taxonomic analysis
with metagenome download from the SRA, genome download from GenBank, and read mapping. We
used genome-grist v0.7.4 [58] to generate the results in this paper; see conf-paper.yml  in the
pipeline repository.

genome-grist relies on matplotlib [59], Jupyter Notebook [60], numpy [61], pandas [62], papermill,
samtools [63], bedtools [64], fastp [65], khmer [66], screed [67], seqtk [68], and sra-tools [69]. These
tools are all installed and managed in snakemake via conda [70] and bioconda [71]. genome-grist itself
is developed under the BSD 3-clause open source license, and is available at github.com/dib-
lab/genome-grist/.

Intermediate data products and �gure generation

All �gures were generated using the Jupyter Notebooks from v0.1 of the github.com/dib-lab/2021-
paper-sourmash-gather-pipeline repository [72]. This repository also contains the intermediate data
products necessary for �gure generation.

Metagenome data set accessions

The accessions for the metagenome data sets in Table 1 are:

data set SRA accession

zymo mock SRR12324253

podar mock SRR606249

gut real SRR5650070

oil well real SRR1976948

https://github.com/dib-lab/genome-grist/
file:///converted/github.com/dib-lab/2021-paper-sourmash-gather-pipeline
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Appendix

1. In our current implementation in sourmash , when equivalent matches are available for a given
rank, a match is chosen at random. This is an implementation decision that is not intrinsic to the
algorithm itself.↩ 
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