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Abstract

As the scale of biological data generation has increased, the bottleneck of research has shifted from
data generation to analysis. Researchers commonly need to build computational work�ows that
include multiple analytic tools and require incremental development as experimental insights
demand tool and parameter modi�cations. These work�ows can produce hundreds to thousands of
intermediate �les and results that must be integrated for biological insight. Data-centric work�ow
systems that internally manage computational resources, software, and conditional execution of
analysis steps are reshaping the landscape of biological data analysis, and empowering researchers to
conduct reproducible analyses at scale. Adoption of these tools can facilitate and expedite robust data
analysis, but knowledge of these techniques is still lacking. Here, we provide a series of practices and
strategies for leveraging work�ow systems with structured project, data, and resource management
to streamline large-scale biological analysis. We present these strategies in the context of high-
throughput sequencing data analysis, but the principles are broadly applicable to biologists working
beyond this �eld.



Author Summary

We present a guide for work�ow-enabled biological sequence data analysis, developed through our
own teaching, training and analysis projects. We recognize that this is based on our own use cases
and experiences, but we hope that our guide will contribute to a larger discussion within the open
source and open science communities and lead to more comprehensive resources. Our main goal is
to accelerate the research of scientists conducting sequence analyses by introducing them to
organized work�ow practices that not only bene�t their own research but also facilitate open and
reproducible science.

Introduction

Biological research has become increasingly computational. In particular, genomics has experienced a
deluge of high-throughput sequencing data that has already reshaped our understanding of the
diversity and function of organisms and communities, building basic understanding from ecosystems
to human health. The analysis work�ows used to produce these insights often integrate hundreds of
steps and involve a myriad of decisions ranging from small-scale tool and parameter choices to larger-
scale design decisions around data processing and statistical analyses. Each step relies not just on
analysis code written by the researcher, but on third-party software, its dependencies, and the
compute infrastructure and operating system on which the code is executed. Historically, this has led
to the patchwork availability of underlying code for analyses as well as a lack of interoperability of the
resulting software and analysis pipelines across compute systems [1]. Combined with unmet training
needs in biological data analysis, these conditions undermine the reuse of data and the
reproducibility of biological research, vastly limiting the value of our generated data [2].

The biological research community is strongly committed to addressing these issues, recently
formalizing the FAIR practices: the idea that all life sciences research (including data and analysis
work�ows) should be Findable, Accessible, Interoperable, and Reusable [3]. For computational
analyses, these ideals are readily achievable with current technologies, but implementing them in
practice has proven di�cult, particularly for biologists with little training in computing [3]. However,
the recent maturation of data-centric work�ow systems designed to automate and facilitate
computational work�ows is expanding our capacity to conduct end-to-end FAIR analyses [5]. These
work�ow systems are designed to handle some aspects of computational work�ows internally:
namely, the interactions with software and computing infrastructure, and the ordered execution of
each step of an analysis. By reducing the manual input and monitoring required at each analysis
juncture, these integrated systems ensure that analyses are repeatable and can be executed at much
larger scales. In concert, the standardized information and syntax required for rule-based work�ow
speci�cation makes code inherently modular and more easily transferable between projects [5,6]. For
these reasons, work�ow systems are rapidly becoming the workhorses of modern bioinformatics.

Adopting work�ow systems requires some level of up-front investment, �rst to understand the
structure of the system, and then to learn the work�ow-speci�c syntax. These challenges can preclude
adoption, particularly for researchers without signi�cant computational experience [4]. In our
experiences with both research and training, these initial learning costs are similar to those required
for learning more traditional analysis strategies, but then provide a myriad of additional bene�ts that
both facilitate and accelerate research. Furthermore, online communities for sharing reusable
work�ow code have proliferated, meaning the initial cost of encoding a work�ow in a system is
mitigated via use and re-use of common steps, leading to faster time-to-insight [5,7].

Building upon the rich literature of “best” and “good enough” practices for computational biology
[8,9,10], we present a series of strategies and practices for adopting work�ow systems to streamline



data-intensive biology research. This manuscript is designed to help guide biologists towards project,
data, and resource management strategies that facilitate and expedite reproducible data analysis in
their research. We present these strategies in the context of our own experiences working with high-
throughput sequencing data, but many are broadly applicable to biologists working beyond this �eld.

Work�ows facilitate data-intensive biology

Data-intensive biology typically requires that researchers execute computational work�ows using
multiple analytic tools and apply them to many experimental samples in a systematic manner. These
work�ows commonly produce hundreds to thousands of intermediate �les and require incremental
changes as experimental insights demand tool and parameter modi�cations. Many intermediate
steps are central to the biological analysis, but others, such as converting between �le formats, are
rote computational tasks required to passage data from one tool to the next. Some of these steps can
fail silently, producing incomplete intermediate �les that imperceptively invalidate downstream
results and biological inferences. Properly managing and executing all of these steps is vital, but can
be both time-consuming and error-prone, even when automated with scripting languages such as
bash.

The emergence and maturation of work�ow systems designed with bioinformatic challenges in mind
has revolutionized computing in data intensive biology [11]. Work�ow systems contain powerful
infrastructure for work�ow management that can coordinate runtime behavior, self-monitor progress
and resource usage, and compile reports documenting the results of a work�ow (Figure 1). These
features ensure that the steps for data analysis are repeatable and at least minimally described from
start to �nish. When paired with proper software management, fully-contained work�ows are
scalable, robust to software updates, and executable across platforms, meaning they will likely still
execute the same set of commands with little investment by the user after weeks, months, or years.



Figure 1:  Work�ow Systems: Bioinformatic work�ow systems have built-in functionality that facilitates and simpli�es
running analysis pipelines. A. Samples: Work�ow systems enable you to use the same code to run each step on each
sample. Samples can be easily added if the analysis expands. B. Software Management: Integration with software
management tools (e.g. conda, singularity, docker) can automate software installation for each step. C. Branching, D.
Parallelization, and E. Ordering: Work�ow systems handle conditional execution, ensuring that tasks are executed in
the correct order for each sample �le, including executing independent steps in parallel if possible given the resources
provided. F. Standard Steps: Many steps are now considered “standard” (e.g. quality control). Work�ow languages keep
all information for a step together and can be written to enable you to remix and reuse individual steps across pipelines.
G. Rerun as necessary: Work�ow systems keep track of which steps executed properly and on which samples, and
allow you to rerun failed steps (or additional steps) rather than re-executing the entire work�ow. H. Reporting:
Work�ow languages enable comprehensive reporting on work�ow execution and resource utilization by each tool. I.
Portability: Analyses written in work�ow languages (with integrated software management) can be run across
computing systems without changes to code.

To properly direct an analysis, work�ow systems need to encode information about the relationships
between every work�ow step. In practice, this means that each analysis step must specify the input
(or types of inputs) needed for that step, and the output (or types of outputs) being produced. This
structure provides several additional bene�ts. First, work�ows become minimally self-documented, as
the directed graph produced by work�ow systems can be exported and visualized, producing a
graphical representation of the relationships between all steps in a pipeline (see Figure 5). Next,
work�ows are more likely to be fully enclosed without undocumented steps that are executed by
hand, meaning analyses are more likely to be reproducible. Finally, each step becomes a self-
contained unit that can be used and re-used across multiple analysis work�ows, so scientists can
spend less time implementing standard steps, and more time on their speci�c research questions. In
sum, the internal sca�olding provided by work�ow systems helps build analyses that are generally
better documented, repeatable, transferable, and scalable.

Getting started with work�ows



The work�ow system you choose will be largely dependent on your analysis needs. Here, we draw a
distinction between two types of work�ows: “research” work�ows that are under iterative
development to answer novel scienti�c questions, and “production” work�ows, which have reached
maturity and are primarily used to run a standard analysis on new samples. In particular, research
work�ows require �exibility and assessment at every step: outliers and edge cases may reveal
interesting biological di�erences, rather than sample processing or technical errors. Many work�ow
systems can be used for either type, but we note cases where their properties facilitate one of these
types over the other.

Using work�ows without learning work�ow syntax While the bene�ts of executing an analysis
within a data-centric work�ow system are immense, the learning curve associated with command-line
systems can be daunting. It is possible to obtain the bene�ts of work�ow systems without learning
new syntax. Websites like Galaxy, Cavatica, and EMBL-EBI MGnify o�er online portals in which users
build work�ows around publicly-available or user-uploaded data [12,13,14]. On the command line,
many research groups have used work�ow systems to wrap one or many analysis steps (speci�ed in
an underlying work�ow language) in a more user-friendly command-line application that accepts user
input and executes the analysis. These pipeline applications allow users to take advantage of
work�ow software without needing to write the work�ow syntax or manage software installation for
each analysis step. Some examples include the nf-core RNA-seq pipeline [1,15], the PiGx genomic
analysis toolkit [16], the ATLAS metagenome assembly and binning pipeline [17,18], the Sunbeam
metagenome analysis pipeline [19,20], and two from our own lab, the dammit eukaryotic
transcriptome annotation pipeline [21] and the elvers de novo transcriptome pipeline [22]. These
pipeline applications typically execute a series of standard steps, but many provide varying degrees of
customizability ranging from tool choice to parameter speci�cation.

Choosing a work�ow system If your use case extends beyond these tools, there are several
scriptable work�ow systems that o�er comparable bene�ts for carrying out your own data-intensive
analyses. Each has it own strengths, meaning each work�ow software will meet an individuals
computing goals di�erently (see Table 1). Our lab has adopted Snakemake [23], in part due to its
integration with Python, its �exibility for building and testing new analyses in di�erent languages, and
its intuitive integration with software management tools (described below). Snakemake and Next�ow
[25] are commonly used for developing new research pipelines, where �exibility and iterative,
branching development is a key feature. Common Work�ow Language (CWL) and Work�ow
Description Language (WDL) are work�ow speci�cation formats that are more geared towards
scalability, making them ideal for production-level pipelines with hundreds of thousands of samples
[26]. WDL and CWL are commonly executed on platforms such as Terra [27] or Seven Bridges
Platform [28]. Language-speci�c work�ow systems, such as ROpenSci’s Drake [29], can take full
advantage of the language’s internal data structures, and provide automation and reproducibility
bene�ts for work�ows executed primarily within the language ecosystem.

Table 1:  Four of the most widely used bioinformatics work�ow systems (2020), with links to documentation, example
work�ows, and general tutorials. In many cases, there may be tutorials online that are tailored for use cases in your
�eld. All of these systems can interact with tools or tasks written in other languages and can function across cloud
computing systems and high-performance computing clusters. Some can also import full work�ows from other
speci�cation languages.

Work�ow System Documentation Example Work�ow Tutorial

Snakemake https://snakemake.readt
hedocs.io/

https://github.com/snakemak
e-work�ows/chipseq

https://snakemake.readthedo
cs.io/en/stable/tutorial/tutoria
l.html

Next�ow https://www.next�ow.io/ https://github.com/nf-
core/sarek

https://www.next�ow.io/docs/
latest/getstarted.html



Work�ow System Documentation Example Work�ow Tutorial

Common work�ow
language

https://www.commonwl.
org/

https://github.com/EBI-
Metagenomics/pipeline-v5

https://www.commonwl.org/u
ser_guide/02-1st-
example/index.html

Work�ow description
language https://openwdl.org/

https://github.com/gatk-
work�ows/gatk4-data-
processing

https://support.terra.bio/hc/e
n-us/articles/360037127992–
1-howto-Write-your-�rst-WDL-
script-running-GATK-
HaplotypeCaller

The best work�ow system to choose may be the one with a strong and accessible local or online
community in your �eld, somewhat independent of your computational needs. The availability of
�eld-speci�c data analysis code for reuse and modi�cation can facilitate the adoption process, as can
community support for new users. Fortunately, the standardized syntax required by work�ow
systems, combined with widespread adoption in the open science community, has resulted in a
proliferation of open access work�ow-system code for routine analysis steps [30,31]. At the same
time, consensus approaches for data analysis are emerging, further encouraging reuse of existing
code [32,33,34,35,36].

The Getting started developing work�ows section contains strategies for modifying and developing
work�ows for your own analyses.

Wrangling Scienti�c Software

Analysis work�ows commonly rely on multiple software packages to generate �nal results. These
tools are heterogeneous in nature: they are written by researchers working in di�erent coding
languages, with varied approaches to software design and optimization, and often for speci�c analysis
goals. Each program has a number of other programs it depends upon to function (“dependencies”),
and as software changes over time to meet research needs, the results may change, even when run
with identical parameters. As a result, it is critical to take an organized approach to installing,
managing, and keeping track of software and software versions. On many compute systems, system-
wide software management is overseen by system administrators, who ensure commonly-used and
requested software is installed into a “module” system available to all users. Unfortunately, this
system limits software version transparency and does not lend itself well to exploring new work�ows
and software, as researchers do not have permission to install software themselves. To meet this
need, most work�ow managers integrate with software management systems that handle software
installation, management, and packaging, alleviating problems that arise from complex dependencies
and facilitating documentation of software versions. Software management systems range from
lightweight systems that manage only the software and its dependencies, to heavyweight systems
that control for all aspects of the runtime and operating system, ensuring 100% reproducibility of
results across computational platforms and time.

On the lightweight end, the conda package manager has emerged as a leading software management
solution for research work�ows (Figure 2). Conda handles both cluster permission and version
con�ict issues with a user-based software environment system, and features a straightforward
“recipe” system which simpli�es the process of making new software installable (including simple
management of versions and updates). These features have led to widespread adoption within the
bioinformatics community: packages for new software become quickly available, and can be installed
easily across platforms. However, conda does not completely isolate software installations and aims
neither for bitwise reproducibility nor long-term archiving of install packages, meaning installations
will not be completely reproducible over time. Heavyweight software management systems package
not only the software of interest, but also the runtime environment information, with the goal of
ensuring perfect reproducibility in software installation over time. Tools such as singularity and



docker [3,11,37,38] wrap software environments in “containers” that capture and reproduce the
runtime environment information. Container-based management is particularly useful for systems
where some dependencies may not be installable by lightweight managers. However, software
installation within these containers can be limited by similar reproducibility issues, including changes
in dependency installations over time. “Functional package managers” such as GNU Guix and Nix
strictly require all dependency and con�guration details be encoded within each software package,
providing the most comprehensively reproducible installations. These have begun to be integrated
into some bioinformatic tools [16], but have a steeper learning curve for independent use. In addition,
standard installation of these managers requires system-wide installation permissions, requiring
assistance from system administrators on most high-performance computing systems.

Figure 2:  The conda package and environment manager simpli�es software installation and management. A.
Conda Recipe Repositories: Each program distributed via Conda has a “recipe” describing all software dependencies
needed for installation using Conda (each of which must also be installable via Conda). Recipes are stored and managed
in the cloud in separate “channels”, some of which specialize in particular �elds or languages (e.g. the “bioconda”
channel specializes in bioinformatic software, while the “conda-forge” channel is a more general e�ort to provide and
maintain standardized conda packages for a wide range of software) [11]. B. Use Conda Environments to Avoid
Installation Con�icts: Conda does not require root privileges for software installation, thus enabling use by
researchers working on shared cluster systems. However, even user-based software installation can encounter



dependency con�icts. For example, you might need to use python2 to install and run a program (e.g. older scripts
written by members of your lab), while also using snakemake to execute your work�ows (requires python>=3.5). By
installing each program into an isolated “environment” that contains only the software required to run that program,
you can ensure all programs used throughout your analysis will run without issue. Using small, separate environments
for your software, specifying the desired software version, and building many simple environments to accommodate
di�erent steps in your work�ow is critical for reducing the amount of time it takes conda to resolve dependency
con�icts between di�erent software tools (“solve” an environment). Conda virtual environments can be created and
installed either on the command line, or via an environment YAML �le, as shown. In this case, the environment �le also
speci�es which conda channels to search and download programs from. When speci�ed in a YAML �le, conda
environments are easily transferable between computers and operating systems. Broad community adoption has
resulted in a proliferation of both conda-installable scienti�c software and tools that leverage conda installation
speci�cations. For example, the Mamba package manager is an open source reimplementation of the conda manager
that can install conda-style environments with increased e�ciency [39]. The BioContainers Registry is a project that
automatically builds and distributes docker and singularity containers for bioinformatics software packages using each
package’s conda installation recipe [40].

Getting started with software management

Using software without learning software management systems First, there are a number of
ways to test software before needing to worry about installation. Some software packages are
available as web-based tools and through a series of data upload and parameter speci�cations, allow
the user to interact with a tool that is running on a back-end server. Integrated development
environments (IDE) like PyCharm and RStudio can manage software installation for language-speci�c
tools, and can be very helpful when writing analysis code. While these approaches do not integrate
into reproducible work�ows, they may be ideal for testing a tool to determine whether it is useful for
your data before integration in your analysis.

Choosing a software management system It is important to balance the time needed to learn to
properly use a software management system with the needs of both the project and the researchers.
Software management systems with large learning curves are less likely to be widely adopted among
researchers with a mix of biological and computational backgrounds. In our experience, software
management with conda nicely balances reproducibility with �exibility and ease of use. These trade-
o�s are best for research work�ows under active development, where �exible software installation
solutions that enable new analysis explorations or regular tool updates are critical. For production
work�ows that require maximal reproducibility, it is worth the larger investment required to use
heavyweight systems. This is particularly true for advanced users who can more easily navigate the
steps required for utilizing these tools. Container-based software installation via docker and
singularity are common for production-level work�ows, and Guix and Nix-based solutions are gaining
traction. Importantly, the needs and constraints of a project can evolve over time, as may the system
of choice.

Integrating software management within work�ows Work�ow systems provide seamless
integration with a number of software management tools. Each work�ow system requires di�erent
speci�cation for initiation of software management, but typically requires about one additional line of
code per step that requires the use of software. If the software management tool is installed locally,
the work�ow will automatically download and install the speci�ed environment or container and use
it for speci�ed step.

In our experience, the complete solution for using scienti�c software involves a combination of
approaches. Interactive and exploratory analyses conducted in IDEs and jupyter notebooks (usually
with local software installation with conda) are useful for developing an analysis strategy and creating
an initial work�ow. This is then followed by work�ow-integrated software management via conda,
singularity, or nixOS for executing the resulting work�ow on many samples. This process not linear:
we often cycle between exploratory testing and automation as we iteratively extend our analyses.



Work�ow-Based Project Management

Project management, the strategies and decisions used to keep a project organized, documented,
functional, and shareable, is foundational to any research program. Clear organization and
management is a learned skill that takes time to implement. Work�ow systems simplify and improve
computational project management, but even work�ows that are fully speci�ed in work�ow systems
require additional investment to stay organized, documented, and backed up.

Systematically document your work�ows

Pervasive documentation provides indispensable context for biological insights derived from an
analysis, facilitates transparency in research, and increases reusability of the analysis code. Good
documentation covers all aspects of a project, including �le and results organization, clear and
commented code, and accompanying explanatory documents for design decisions and metadata.
Work�ow systems facilitate building this documentation, as each analysis step (with chosen
parameters) and the links between those steps are completely speci�ed within the work�ow syntax.
This feature streamlines code documentation, particularly if you include as much of the analysis as
possible within the automated work�ow framework. Outside of the analysis itself, applying consistent
organizational design can capitalize on the structure and automation provided by work�ows to
simplify the generation of quality documentation for all aspects of your project. Below, we discuss
project management strategies for building reproducible work�ow-enabled biological analyses.

Use consistent, self-documenting names

Using consistent and descriptive identi�ers for your �les, scripts, variables, work�ows, projects, and
even manuscripts helps keep your projects organized and interpretable for yourself and
collaborators. For work�ow systems, this strategy can be implemented by tagging output �les with a
descriptive identi�er for each analysis step, either in the �lename or by placing output �les within a
descriptive output folder. For example, the �le shown in Figure 3 has been preprocessed with a
quality control trimming step. For large work�ows, placing results from each step of your analysis in
isolated, descriptive folders can be essential for keeping your project workspace clean and organized.

Figure 3:  Consistent and informative �le naming improves organization and interpretability. For ease of grouping and
referring to input �les, it is useful to keep unique sample identi�cation in the �lename, often with a metadata �le
explaining the meaning of each unique descriptor. For analysis scripts, it can help to implement a numbering scheme,
where the name of �rst �le in the analysis begins with “00”, the next with “01”, etc. For output �les, it can help to add a
short, unique identi�er to output �les processed with each analysis step. This particular �le is a RAD sequencing fastq
�le of a �sh species that has been preprocessed with a fastq quality trimming tool.

Store work�ow metadata with the work�ow



Developing biological analysis work�ows can involve hundreds of small decisions: What parameters
work best for each step? Why did you use a certain reference �le for annotation as compared with
other available �les? How did you �nally manage to get around the program or installation error? All
of these pieces of information contextualize your results and may be helpful when sharing your
�ndings. Keeping information about these decisions in an intuitive and easily accessible place helps
you �nd it when you need it. To capitalize on the utility of version control systems described below, it
is most useful to store this information in plain text �les. Each main directory of a project should
include notes on the data or scripts contained within, so that a collaborator could look into the
directory and understand what to �nd there (especially since that “collaborator” is likely to be you, a
few months from now!). Code itself can contain documentation - you can include comments with the
reasoning behind algorithm choice or include a link to online documentation or solution that helped
you decide how to shape your di�erential expression analysis. Larger pieces of information can be
kept in “README” or notes documents kept alongside your code and other documents. For example, a
GitHub repository documenting the reanalysis of the Marine Microbial Eukaryote Transcriptome
Sequencing Project uses a README alongside the code to document the work�ow and digital object
identi�ers for data products [41,42]. While this particular strategy cannot be automated, it is critical
for interpreting the �nal results of your work�ow.

Document data and analysis exploration using computational notebooks

Computational notebooks allow users to combine narrative, code, and code output
(e.g. visualizations) in a single location, enabling the user to conduct analysis and visually assess the
results in a single �le (see Figure 4). These notebooks allow for fully documented iterative analysis
development, and are particularly useful for data exploration and developing visualizations prior to
integration into a work�ow or as a report generated by a work�ow that can be shared with
collaborators.

Figure 4:  Examples of computational notebooks. Computational notebooks allow the user to mix text, code, and
results in one document. Panel A. shows an RMarkdown document viewed in the RStudio integrated development
environment, while Panel B. shows a rendered HTML �le produced by knitting the RMarkdown document [43]. Panel C.
shows a Jupyter Notebook, where code, text, and results are rendered inline as each code chunk is executed [44]. The



second grey chunk is a raw Markdown chunk with text that will be rendered inline when executed. Both notebooks
generate a histogram of a metadata feature, number of generations, from a long-term evolution experiment with
Escherichia coli [45]. Computational notebooks facilitate sharing by packaging narrative, code, and visualizations
together. Sharing can be enhanced further by packaging computational notebooks with tools like Binder [46]. Binder
builds an executable environment (capable of running RStudio and Jupyter notebooks) out of a GitHub repository using
package management systems and docker to build reproducible and executable software environments as speci�ed in
the repository. Binders can be shared with collaborators (or students in a classroom setting), and analysis and
visualization can be ephemerally reproduced or altered from the code provided in computational notebooks. 

Visualize your work�ow

Visual representations can help illustrate the connections in a work�ow and improve the readability
and reproducibility of your project. At the highest level, �owcharts that detail relationships between
steps of a work�ow can help provide big-picture clari�cation, especially when the pipeline is
complicated. For individual steps, a graphical representation of the output can show the status of the
project or provide insight on additional analyses that should be added. For example, Figure 5 exhibits
a modi�ed Snakemake work�ow visualization from an RNA-seq quanti�cation pipeline [47].

Figure 5:  A directed acyclic graph (DAG) that illustrates connections between all steps of a sequencing data analysis
work�ow. Each box represents a step in the work�ow, while lines connect sequential steps. The DAG shown in this
�gure illustrates a real bioinformatics work�ow for RNA-seq quanti�cation was generated by modifying the default
Snakemake work�ow DAG. This example of an initial work�ow used only to quality control and then quantify one FASTQ
�le against a transcriptome more than doubles the amount of �les in a project. When the number of steps are
expanded to carry out a full research analysis and the number of initial input �les are increased, a work�ow can
generate hundreds to thousands of intermediate �les. Fortunately, work�ow system coordination alleviates the need
for a user to directly manage �le interdependencies. For a larger analysis DAG, see [48]

Version control your project

As your project develops, version control allows you to keep track of changes over time. You may
already do this in some ways, perhaps with frequent hard drive backups or by manually saving
di�erent versions of the same �le - e.g. by appending the date to a script name or appending
“version_1” or “version_FINAL” to a manuscript draft. For computational work�ows, using version
control systems such as Git or Mercurial can be used to keep track of all changes over time, even
across multiple systems, scripting languages, and project contributors (see Figure 6). If a key piece of
a work�ow inexplicably stops working, consistent version control can allow you to rewind in time and
identify di�erences from when the pipeline worked to when it stopped working. Backing up your
version controlled analysis in an online repository such as GitHub, GitLab, or Bitbucket provides
critical insurance as you iteratively modify and develop your work�ow.



Figure 6:  Version Control Version control systems (e.g. Git, Mercurial) work by storing incremental di�erences in �les
from one saved version (“commit”) to the next. To visualize the di�erences between each version, text editors such as
Atom and online services such as GitHub, GitLab and Bitbucket use red highlighting to denote deletions, and green
highlighting to denote additions. In this trivial example, a typo in version 1 (in red) was corrected in version 2 (in green).
These systems are extremely useful for code and manuscript development, as it is possible to return to the snapshot of
any saved version. This means that version control systems save you from accidental deletions, preserve code you
thought you no longer needed and preserve a record of project changes over time.

When combined with online backups, version control systems also facilitate code and data availability
and reproducibility for publication. For example, to preserve the version of code that produced
published results, you can create a “release”: a snapshot of the current code and �les in a GitHub
repository. You can then generate a digital object identi�er (DOI) for that release using a permanent
documentation service such as Zenodo ([49]) and make it available to reviewers and beyond (see
“sharing” section, below).

Share your work�ow and analysis code

Sharing your work�ow code with collaborators, peer reviewers, and scientists seeking to use a similar
method can foster discussion and review of your analysis. Sticking to a clear documentation strategy,
using a version control system, and packaging your code in notebooks or as a work�ow prepare them
to be easily shared with others. To go one step further, you can package your code with tools like
Binder, ReproZip, or Whole Tale, or make interactive visualizations with tools like Shiny apps or Plotly.
These approaches let others run the code on cloud computers in environments identical to those in
which the original computation was performed (Figure 4, Figure 7) [46,50,51]. These tools
substantially reduce overhead associated with interacting with code and data, and in doing so, make it
fast and easy to rerun portions of the analysis, check accuracy, or even tweak the analysis to produce
new results. If you also share your code and work�ows publicly, you will also help contribute to the
growing resources for open work�ow-enabled biological research.



Figure 7:  Interactive visualizations facilitate sharing and repeatability. A. Interactive visualization dashboard in the
Pavian Shiny app for metagenomic analysis [52,53]. Shiny allows you to build interactive web pages using R code. Data
is manipulated by R code in real-time in a web page, producing analysis and visualizations of a data set. Shiny apps can
contain user-speci�able parameters, allowing a user to control visualizations or analyses. As seen above, sample “PT1” is
selected, and taxonomic ranks class and order are excluded. Shiny apps allow collaborators who may or may not know
R to modify R visualizations to �t their interests. B. Plotly heatmap of transcriptional pro�ling in human brain samples
[54]. Hovering over a cell in the heatmap displays the sample names from the x and y axis, as well as the intensity value.
Plotting tools like plotly and vega-lite produce single interactive plots that can be shared with collaborators or integrated
into websites [55,56]. Interactive visualizations are also helpful in exploratory data analysis.

Getting started developing work�ows

In our experience, the best way to have your work�ow system work for you is to include as much of
your analysis as possible within the automated work�ow framework, use self-documenting names,
include analysis visualizations, and keep rigorous documentation alongside your work�ow that
enables you to understand each decision and entirely reproduce any manual steps. Some of the tools
discussed above will inevitably change over time, but these principles apply broadly and will help you
design clear, well-documented, and reproducible analyses. Ultimately, you will need to experiment
with strategies that work for you – what is most important is to develop a clear set of strategies and
implement them tenaciously. Below, we provide a few practical strategies to try as you begin
developing your own work�ows.

Start with working code When building a work�ow for the �rst time, start from working examples
provided as part of the tool documentation or otherwise available online. This functioning example
code then provides a reliable work�ow framework free of syntax errors which you can customize for
your data without the overhead of generating correct work�ow syntax from scratch. Be sure to run
this analysis on provided test data, if available, to ensure the tools, and command line syntax function
at a basic level. Table 1 provides links to o�cial repositories containing tutorials and example
biological analysis work�ows, and work�ow tutorials and code sharing websites like GitHub, GitLab,
and Bitbucket have many publicly available work�ows for other analyses. If a work�ow is available
through Binder, you can test and experiment with work�ow modi�cation on Binder’s cloud system
without needing to install a work�ow manager or software management tool on your local compute
system [46].

Test with subsampled data Once you have working work�ow syntax, test the step on your own data
or public data related to your species or condition of interest. First, create a subsampled dataset that
you can use to test your entire analysis work�ow. This set will save time, energy, and computational



resources throughout work�ow development. If working with FASTQ data, a straightforward way to
generate a small test set is to subsample the �rst million lines of a �le (�rst 250k reads):

head -n 1000000 FASTQ_FILE.fq > test_fastq.fq

While there are many more sophisticated ways to subsample reads, this technique should be
su�cient for testing each step of a most work�ows prior to running your full dataset. In speci�c cases,
such as eukaryotic genome assembly, you may need to be more intentional with how you subsample
reads and how much sample data you use as a test set.

Document your process Document your changes, explorations, and errors as you develop. We
recommend using the Markdown language so your documentation is in plain text (to facilitate version
control), but can still include helpful visual headings, code formatting, and embedded images.
Markdown editors with visual previewing, such as HackMD, can greatly facilitate notetaking, and
Markdown documents are visually rendered properly within your online version control backups on
services such as GitHub [57].

Develop your work�ow From your working code, iteratively modify and add work�ow steps to meet
your data analysis needs. This strategy allows you to �nd and �x mistakes on small sections of the
work�ow. Periodically clean your output directory and rerun the entire work�ow, to ensure all steps
are fully interoperable (using small test data will improve the e�ciency of this step!). If possible, using
mock or control datasets can help you verify that the analysis you are building actually returns correct
biological results. Tutorials and tool documentation are useful companions during development; as
with any language, remembering work�ow-speci�c syntax takes time and practice.

Assess your results Evaluate your work�ow results as you go. Consider what aspects (e.g. tool choice,
program parameters) can be evaluated rigorously, and assess each step for expected behavior. Other
aspects (e.g. �ltering metadata, joining results across programs or analysis, software and work�ow
bugs) will be more di�cult to evaluate. Wherever possible, set up positive and negative controls to
ensure your analysis is performing the desired analysis properly. Once you’re certain an analysis is
executing as designed, tracking down unusual results may reveal interesting biological di�erences.

Back up early and often As you write new code, back up your changes in an online repository such
as GitHub, GitLab, or Bitbucket. These services support both drag-and-drop and command line
interaction.

Scale up your work�ow Bioinformatic tools vary in the resources they require: some analysis steps
are compute-intensive, other steps are memory intensive, and still others will have large intermediate
storage needs. If using high-performance computing system or the cloud, you will need to request
resources for running your pipeline, often provided as a simultaneous execution limit or purchased by
your research group on a cost-per-compute basis. Work�ow systems provide built-in tools to monitor
resource usage for each step. Running a complete work�ow on a single sample with resource
monitoring enabled generates an estimate of computational resources needed for each step. These
estimates can be used to set appropriate resource limits for each step when executing the work�ow
on your remaining samples.

Find a community and ask for help when you need it Local and online users groups are helpful
communities when learning a work�ow language. When you are �rst learning, help from more
advanced users can save you hours of frustration. After you’ve progressed, providing that same help
to new users can help you cement the syntax in your mind and tackle more advanced uses. Data-
centric work�ow systems have been enthusiastically adopted by the open science community, and as
a consequence, there is a critical mass of tutorials and open access code, as well as code discussion
on forums and via social media, particularly Twitter. Post in the relevant work�ow forums when you



have hit a stopping point you are unable to work through. Be respectful of people’s time and energy
and be sure to include appropriate details important to your problem (see Strategic troubleshooting
section).

Data and resource management for work�ow-enabled biology

Advancements in sequencing technologies have greatly increased the volume of data available for
biological query [58]. Work�ow systems, by virtue of automating many of the time-intensive project
management steps traditionally required for data-intensive biology, can increase our capacity for data
analysis. However, conducting biological analyses at this scale requires a coordinated approach to
data and computational resource management. Below, we provide recommendations for data
acquisition, management, and quality control that have become especially important as the volume of
data has increased. Finally, we discuss securing and managing appropriate computational resources
for the scale of your project.

Managing large-scale datasets

Experimental design, �nding or generating data, and quality control are quintessential parts of data
intensive biology. There is no substitute for taking the time to properly design your analysis, identify
appropriate data, and conduct sanity checks on your �les. While these tasks are not automatable,
many tools and databases can aid in these processes.

Look for appropriate publicly-available data

With vast amounts of sequencing data already available in public repositories, it is often possible to
begin investigating your research question by seeking out publicly available data. In some cases, these
data will be su�cient to conduct your entire analysis. In others cases, particularly for biologists
conducting novel experiments, these data can inform decisions about sequencing type, depth, and
replication, and can help uncover potential pitfalls before they cost valuable time and resources.

Most journals now require data for all manuscripts to be made accessible, either at publication or
after a short moratorium. Further, the FAIR (�ndable, accessible, interoperable, reusable) data
movement has improved the data sharing ecosystem for data-intensive biology
[59,60,61,62,63,64,64,65]. You can �nd relevant sequencing data either by starting from the “data
accessibility” sections of papers relevant to your research or by directly searching for your organism,
environment, or treatment of choice in public data portals and repositories. The International
Nucleotide Sequence Database Collaboration (INSDC), which includes the Sequence Read Archive
(SRA), European Nucleotide Archive (ENA), and DataBank of Japan (DDBJ) is the largest repository for
raw sequencing data, but no longer accepts sequencing data from large consortia projects [66]. These
data are instead hosted in consortia-speci�c databases, which may require some domain-speci�c
knowledge for identifying relevant datasets and have unique download and authentication protocols.
For example, raw data from the Tara Oceans expedition is hosted by the Tara Ocean Foundation [67].
Additional curated databases focus on processed data instead, such as gene expression in the Gene
Expression Omnibus (GEO) [68]. Organism-speci�c databases such as Wormbase (Caenorhabditis
elegans) specialize on curating and integrating sequencing and other data associated with a model
organism [69]. Finally, rather than focusing on certain data types or organisms, some repositories are
designed to hold any data and metadata associated with a speci�c project or manuscript (e.g. Open
Science Framework, Dryad, Zenodo [70]).

Consider analysis when generating your own data



If generating your own data, proper experimental design and planning are essential. For cost-
intensive sequencing data, there are a range of decisions about experimental design and sequencing
(including sequencing type, sequencing depth per sample, and biological replication) that impact your
ability to properly address your research question. Conducting discussions with experienced
bioinformaticians and statisticians, prior to beginning your experiments if possible, is the best way to
ensure you will have su�cient statistical power to detect e�ects. These considerations will be
di�erent for di�erent types of sequence analysis. To aid in early project planning, we have curated a
series of domain-speci�c references that may be useful as you go about designing your experiment
(see Table 2). Given the resources invested in collecting samples for sequencing, it’s important to
build in a bu�er to preserve your experimental design in the face of unexpected laboratory or
technical issues. Once generated, it is always a good idea to have multiple independent backups of
raw sequencing data, as it typically cannot be easily regenerated if lost to computer failure or other
unforeseeable events.

Table 2:  References for experimental design and considerations for common sequencing chemistries.

Sequencing type Resources

RNA-sequencing [32,71,72]

Metagenomic sequencing [33,73,74]

Amplicon sequencing [75,76,77]

Microbial isolate sequencing [78]

Eukaryotic genome sequencing [79,80,81,82]

Whole-genome resequencing [83]

RAD-sequencing [84,84,85,86,87,88]

single cell RNA-seq [89,90]

As your experiment progresses, keep track of as much information as possible: dates and times of
sample collection, storage, and extraction, sample names, aberrations that occurred during collection,
kit lot used for extraction, and any other sample and sequencing measurements you might be able to
obtain (temperature, location, metabolite concentration, name of collector, well number, plate
number, machine your data was sequenced, on etc). This metadata allows you to keep track of your
samples, to control for batch e�ects that may arise from unintended batching during sampling or
experimental procedures and makes the data you collect reusable for future applications and analysis
by yourself and others. Wherever possible, follow the standard guidelines for formatting metadata for
scienti�c computing to limit downstream processing and simplify analyses requiring these metadata
(see: [10]). We have focused here on sequencing data; for data management over long-term
ecological studies, we recommend [91].

Getting started with sequencing data

Protect valuable data

Aside from the code itself, raw data are the most important �les associated with a work�ow, as they
cannot be regenerated if accidentally altered or deleted. Keeping a read-only copy of raw data
alongside a work�ow as well multiple backups protects your data from accidents and computer
failure. This also removes the imperative of storing intermediate �les as these can be easily
regenerated by the work�ow.

When sharing or storing �les and results, data version control can keep track of di�erences in �les
such as changes from tool parameters or versions. The version control tools discussed in the



Work�ow-based project management section are primarily designed to handle small �les, but GitHub
provides support for Git Large File Storage (LFS), and repositories such as the Open Science
Framework (OSF), Figshare, Zenodo, and Dryad can be used for storing larger �les and datasets
[49,70,92,93,94].

In addition to providing version control for projects and datasets, these tools also facilitate sharing
and attribution by enabling generation of digital object identi�ers (doi) for datasets, �gures,
presentations, code, and preprints. As free tools often limit the size of �les that can be stored, a
number of cloud backup and storage services are also available for purchase or via university
contract, including Google Drive, Box, Dropbox, Amazon Web Services, and Backblaze. Full computer
backups can be conducted to these storage locations with tools like rclone [95].

Ensure data integrity during transfers

If you’re working with publicly-available data, you may be able to work on a compute system where
the data are already available, circumventing time and e�ort required for downloading and moving
the data. Databases such as the Sequence Read Archive (SRA) are now available on commercial cloud
computing systems, and open source projects such as Galaxy enable working with SRA sequence �les
directly from a web browser [12,96]. Ongoing projects such as the NIH Common Fund Data
Ecosystem aim to develop a data portal to make NIH Common Fund data, including biomedical
sequencing data, more �ndable, accessible, interoperable, and reusable (FAIR).

In most cases, you’ll still need to transfer some data - either downloading raw data or transferring
important intermediate and results �les for backup and sharing (or both). Transferring compressed
�les (gzip, bzip2, BAM/CRAM, etc.) can improve transfer speed and save space, and checksums can be
used to to ensure �le integrity after transfer (see Figure 8).

Figure 8:  Use Checksums to ensure �le integrity Checksum programs (e.g. md5, sha256) encode �le size and
content in a single value known as a “checksum”. For any given �le, this value will be identical across platforms when
calculated using the same checksum program. When transferring �les, calculate the value of the checksum prior to
transfer, and then again after transfer. If the value is not identical, there was an error introduced during transfer
(e.g. �le truncation, etc). Checksums are often provided alongside publicly available �les, so that you can verify proper
download. Tools like rsync and rclone that automate �le transfers use checksums internally to verify that �les were
transferred properly, and some GUI �le transfer tools (e.g. Cyberduck) can assess checksums when they are provided
[95]. If you generated your own data and receieved sequencing �les from a sequencing center, be certain you also
receive a checksum for each of your �les to ensure they download properly.

Perform quality control at every step

The quality of your input data has a major impact on the quality of the output results, no matter
whether your work�ow analyzes six samples or six hundred. Assessing data at every analysis step can



reveal problems and errors early, before they waste valuable time and resources. Using quality
control tools that provide metrics and visualizations can help you assess your datasets, particularly as
the size of your input data scales up. However, data from di�erent species or sequencing types can
produce anomalous quality control results. You are ultimately the single most e�ective quality control
tool that you have, so it is important to critically assess each metric to determine those that are
relevant for your particular data.

Look at your �les Quality control can be as simple as looking at the �rst few and last few lines of
input and output data �les, or checking the size of those �les (see Table 3). To develop an intuition for
what proper inputs and outputs look like for a given tool, it is often helpful to �rst run the test
example or data that is packaged with the software. Comparing these input and output �le formats to
your own data can help identify and address inconsistencies.

Table 3:  Some commands to quickly explore the contents of a �le. These commands can be used on Unix and Linux
operating systems to detect common formatting problems or other abnormalities.

command function example

ls -lh list �les with information in a human-
readable format ls -lh *fastq.gz

head print the �rst 6 lines of a �le to
standard out head samples.csv

tail print the last 6 lines of a �le to
standard out tail samples.csv

less show the contents of a �le in a
scrollable screen less samples.csv

zless show the contents of a gzipped �le in
a scrollable screen zless sample1.fastq.gz

wc -l count the number of lines in a �le wc -l ecoli.fasta

cat print a �le to standard out cat samples.csv

grep �nd matching text and print the line
to standard out grep “>” ecoli.fasta

cut cut columns from a table cut -d“,” -f1 samples.csv

Visualize your data Visualization is another powerful way to pick out unusual or unexpected
patterns. Although large abnormalities may be clear from looking at �les, others may be small and
di�cult to �nd. Visualizing raw sequencing data with FastQC (Figure 9A) and processed sequencing
data with tools like the Integrative Genome Viewer and plotting tabular results �les using python or R
can make aberrant or inconsistent results easier to track down [98,99].



Figure 9:  Visualizations produced by MultiQC. MultiQC �nds and automatically parses log �les from other tools and
generates a combined report and parsed data tables that include all samples. MultiQC currently supports 88 tools. A.
MultiQC summary of FastQC Per Sequence GC Content for 1905 metagenome samples. FastQC provides quality control
measurements and visualizations for raw sequencing data from a single sample, and is a near-universal �rst step in
sequencing data analysis because of the insights it provides [98,99]. FastQC measures and summarizes 10 quality
metrics and provides recommendations for whether an individual sample is within an acceptable quality range. 
Not all metrics readily apply to all sequencing data types. For example, while multiple GC peaks might be concerning in
whole genome sequencing of a bacterial isolate, we would expect a non-normal distribution for some metagenome
samples that contain organisms with diverse GC content. Samples like this can be seen in red in this �gure. B. MultiQC
summary of Salmon quant reads mapped per sample for RNA-seq samples [100]. In this �gure, we see that MultiQC
summarizes the number of reads mapped and percent of reads mapped, two values that are reported in the Salmon log
�les.

Pay attention to warnings and log �les Many tools generate log �les or messages while running.
These �les contain information about the quantity, quality, and results from the run, or error
messages about why a run failed. Inspecting these �les can be helpful to make sure tools ran properly
and consistently, or to debug failed runs. Parsing and visualizing log �les with a tool like MultiQC can
improve interpretability of program-speci�c log �les (Figure 9 [101]).



Look for common biases in sequencing data Biases in sequencing data originate from experimental
design, methodology, sequencing chemistry, or work�ows, and are helpful to target speci�cally with
quality control measures. The exact biases in a speci�c data set or work�ow will vary greatly between
experiments so it is important to understand the sequencing method you have chosen and
incorporate appropriate �ltration steps into your work�ow. For example, PCR duplicates can cause
problems in libraries that underwent an ampli�cation step, and often need to be removed prior to
downstream analysis [102,103,104,105,106].

Check for contamination Contamination can arise during sample collection, nucleotide extraction,
library preparation, or through sequencing spike-ins like PhiX, and could change data interpretation if
not removed [107,108,109]. Libraries sequenced with high concentrations of free adapters or with
low concentration samples may have increased barcode hopping, leading to contamination between
samples [110].

Consider the costs and bene�ts of stringent quality control for your data Good quality data is
essential for good downstream analysis. However, stringent quality control can sometimes do more
harm than good. For example, depending on sequencing depth, stringent quality trimming of RNA-
sequencing data may reduce isoform discovery [111]. To determine what issues are most likely to
plague your speci�c data set, it can be helpful to �nd recent publications using a similar experimental
design, or to speak with experts at a sequencing core.

Because sequencing data and applications are so diverse, there is no one-size-�ts-all solution for
quality control. It is important to think critically about the patterns you expect to see given your data
and your biological problem, and consult with technical experts whenever possible.

Securing and managing appropriate computational resources

Sequence analysis requires access to computing systems with adequate storage and analysis power
for your data. For some smaller-scale datasets, local desktop or even laptop systems can be su�cient,
especially if using tools that implement data-reduction strategies such as minhashing [112]. However,
larger projects require additional computing power, or may be restricted to certain operating systems
(e.g. linux). For these projects, solutions range from research-focused high performance computing
systems to research-integrated commercial analysis platforms. Both research-only and and
commercial clusters provide avenues for research and educational proposals to enable access to their
computing resources (see Table 4). In preparing for data analysis, be sure to allocate su�cient
computational resources and funding for storage and analysis, including large intermediate �les and
resources required for personnel training. Note that work�ow systems can greatly facilitate faithful
execution of your analysis across the range of computational resources available to you, including
distribution across cloud computing systems.

Table 4:  Computing Resources Bioinformatic projects often require additional computing resources. If a local or
university-run high-performance computing cluster is not available, computing resources are available via a number of
grant-based or commercial providers.

Provider Access Model Restrictions

Amazon Web Services Paid

Bionimbus Protected Data Cloud Research allocation users with eRA commons account

Cyverse Atmosphere Free with limits storage and compute hours

EGI federated cloud Access by contact European partner countries

Galaxy Free with storage limits data storage limits

Google Cloud Platform Paid



Provider Access Model Restrictions

Google Colab Free computational notebooks, no
resource guarantees

Microsoft Azure Paid

NSF XSEDE Research allocation USA researchers or collaborators

Open Science Data Cloud Research allocation

Wasabi Paid data storage solution only

Getting started with resource management

As the scale of data increases, the resources required for analysis can balloon. Bioinformatic
work�ows can be long-running, require high-memory systems, or involve intensive �le manipulation.
Some of the strategies below may help you manage computational resources for your project.

Apply for research units if eligible There are a number of cloud computing services that o�er grants
providing computing resources to data-intensive researchers (Table 4). In some cases, the resources
provided may be su�cient to cover your entire analysis.

Develop on a local computer when possible Since work�ows transfer easily across systems, it can
be useful to develop individual analysis steps on a local laptop. If the analysis tool will run on your
local system, test the step with subsampled data, such as that created in the Getting started
developing work�ows section. Once working, the new work�ow component can be run at scale on a
larger computing system. Work�ow system tool resource usage reporting can help determine the
increased resources needed to execute the work�ow on larger systems. For researchers without
access to free or granted computing resources, this strategy can save signi�cant cost.

Gain quick insights using sketching algorithms Understanding the basic structure of data, the
relationship between samples, and the approximate composition of each sample can very helpful at
the beginning of data analysis, and can often drive analysis decisions in di�erent directions than those
originally intended. Although most bioinformatics work�ows generate these types of insights, there
are a few tools that do so rapidly, allowing the user to generate quick hypotheses that can be further
tested by more extensive, �ne-grained analyses. Sketching algorithms work with compressed
approximate representations of sequencing data and thereby reduce runtimes and computational
resources. These approximate representations retain enough information about the original
sequence to recapitulate the main �ndings from many exact but computationally intensive work�ows.
Most sketching algorithms estimate sequence similarity in some way, allowing you to gain insights
from these comparisons. For example, sketching algorithms can be used to estimate all-by-all sample
similarity which can be visualized as a Principal Component Analysis or a multidimensional scaling
plot, or can be used to build a phylogenetic tree with accurate topology. Sketching algorithms also
dramatically reduce the runtime for comparisons against databases (e.g. all of GenBank), allowing
users to quickly compare their data against large public databases.

Rowe 2019 [113] reviewed programs and genomic use cases for sketching algorithms, and provided a
series of tutorial workbooks (e.g. Sample QC notebook: [114]).

Use the right tools for your question RNA-seq analysis approaches like di�erential expression or
transcript clustering rely on transcript or gene counts. Many tools can be used to generate these
counts by quantifying the number of reads that overlap with each transcript or gene. For example,
tools like STAR and HISAT2 produce alignments that can be post-processed to generate per-transcript
read counts [115,116]. However, these tools generate information-rich output, specifying per-base



alignments for each read. If you are only interested in read quanti�cation, quasi-mapping tools
provide the desired results while reducing the time and resources needed to generate and store read
count information [117,118].

Seek help when you need it In some cases, you may �nd that your accessible computing system is
ill-equipped to handle the type or scope of your analysis. Depending on the system, sta� members
may be able to help direct you to properly scale your work�ow to available resources, or guide you in
tailoring computational unit allocations or purchases to match your needs.

Strategies for troubleshooting

Work�ows, and research software in general, invariably require troubleshooting and iteration. When
�rst starting with a work�ow system, it can be di�cult to interpret code and usage errors from
unfamiliar tools or languages [2]. Further, the iterative development process of research software
means functionality may change, new features may be added, or documentation may be out of date
[119]. The challenges of learning and interacting with research software require time and patience
[4].

One of the largest barriers to surmounting these challenges is learning how, when, and where to ask
for help. Below we outline a strategy for troubleshooting that can help build your own knowledge
while respecting both your own time and that of research software developers and the larger
bioinformatic community. In the “where to seek help” section, we also recommend locations for
asking general questions around data-intensive analysis, including discussion of tool choice,
parameter selection, and other analysis strategies. Beyond these tips, workshops and materials from
training organizations such as the Carpentries, R-Ladies, RStudio can arm you with the tools you need
to start troubleshooting and jump-start software and data literacy in your community [120]. Getting
involved with these workshops and communities not only provides educational bene�ts but also
networking and career-building opportunities.

How to help yourself: Try to pinpoint your issue or error

Software errors can be the result of syntax errors, dependency issues, operating system con�icts,
bugs in the software, problems with the input data, and many other issues. Running the software on
the provided test data can help narrow the scope of error sources: if the test data successfully runs,
the command is likely free of syntax errors, the source code is functioning, and the tool is likely
interacting appropriately with dependencies and the operating system. If the test data runs but the
tool still produces an error when run with your data and parameters, the error message can be
helpful in discovering the cause of the error. In many cases, the error you’ve encountered has been
encountered many times before, and searching for the error online can turn up a working solution. If
there is a software issue tracker for the software (e.g. on the GitHub, GitLab, or Bitbucket repository),
or a Gitter, Slack, or Google Groups page, performing a targeted search with the error message may
provide additional context or a solution for the error. If targeted searches do not return a results,
Googling the error message with the program name is a good next step. Searching with several
variants and iteratively adding information such as the type of input data, the name of the coding
language or computational platform, or other relevant information, can improve the likelihood that a
there will be a match. There are a vast array of online resources for bioinformatic help ranging from
question sites such as Stack Over�ow and BioStars, to personal or academic blogs and even tutorials
and lessons written by experts in the �eld [121]. This increases the discoverability of error messages
and their solutions.

Sometimes, programs fail without outputting an error message. In cases like these, the software’s
help (usually accessible on the command line via tool-name --help ) and o�cial documentation



may provide clues or additional example use cases that may be helpful in resolving an error. Syntax
errors are extremely common, and typos as small as a single, misplaced character or amount of
whitespace can a�ect the code. If a command matches the documentation and appears syntactically
correct, the software version (often accessible at the command line tool-name --version ) may be
causing the error. 
Best practices for software development follow “semantic versioning” principles, which aim to keep
the arguments and functionality the same for all minor releases of the program (e.g. 1.1 to 1.2) and
only change functions with major releases (e.g. 1.x to 2.0).

How to seek help: include the right details with your question

When searching for the error message and reading the documentation do not resolve an error, it is
usually appropriate to for seek help either from the software developers or from a bioinformatics
community. When asking for help, it’s essential to provide the right details so that other users and
developers can understand the exact conditions that produced the error. At minimum, include the
name and version of the program, the method used to install it, whether or not the test data ran, the
exact code that produced the error, the error message, and the full output text from the run (if any is
produced). The type and version of the operating system you are using is also helpful to include.
Sometimes, this is enough information for others to spot the error. However, if it appears that there
may bug in the underlying code, specifying or providing the minimum amount of data required to
reproduce the error (e.g. reproducible example [122,123]) enables other to reproduce and potentially
solve the error at hand. Putting the e�ort into gathering this information both increases your own
understanding of the problem and makes it easier and faster for others to help solve your issue.
Furthermore, it signals respect for the time that these developers and community members dedicate
to helping troubleshoot and solve user issues.

Where to seek help: online and local communities of practice

Online communities and forums are a rich source of archived bioinformatics errors with many helpful
community members. For errors with speci�c programs, often the best place to post is the
developers’ preferred location for answering questions and solving errors related to their program.
For open source programs on GitHub, GitLab, or Bitbucket, this is often the “Issues” tab within the
software repository, but it could alternatively be a Google groups list, gitter page, or other speci�ed
forum. Usually, the documentation indicates the best location questions. If question is more general,
such as asking about program choice or work�ows, forums relevant to your �eld such as Stack
Over�ow, BioStars, or SEQanswers are good choices, as posts here are often seen by a large
community of researchers. Before posting, search through related topics to double check the
question has not already been answered. As more research software development and
troubleshooting is happening openly in online repositories, it is becoming more important than ever
to follow a code of conduct that promotes open and harassment-free discussion environment [124].
Look for codes of conduct in the online forums you participate in, and make sure you do your part to
help ensure a welcoming community for participants of all backgrounds and computational
competencies.

While there is lots of help available online, there is no substitute for local communities. Local
communities may come in the form of a tech meetup, a users group, a hacky hour, or an informal
meetup of researchers using similar tools. While this may seem like just a local version of Stack
Over�ow, the local, member-only nature can help create a safe and collaborative online space for
troubleshooting problems often encountered by your local bioinformatics community. The bene�t to
beginners is clear: learning the best way to post questions and the important parts of errors, while
getting questions answered so they can move forward in their research. Intermediate users may
actually �nd these communities most useful, as they can also accelerate their own troubleshooting



skills by helping others solve issues that they have already struggled through. While it can be helpful
to have some experts available to help answer questions or to know when to escalate to Stack
Over�ow or other communities, a collaborative community of practice with members at all experience
levels can help all its members move their science forward faster.

If such a community does not yet exist in your area, building this sort of community (discussed in
detail in [125]), can be as simple as hosting a seminar series or starting meetup sessions for data
analysis co-working. In our experience, it can also be useful to set up a local online forum
(e.g. discourse) for group troubleshooting.

Conclusion

Bioinformatics-focused work�ow systems have reshaped data-intensive biology, reducing execution
hurdles and empowering biologists to conduct reproducible analyses at the massive scale of data now
available. Shared, interoperable research code is enabling biologists to spend less time rewriting
common analysis steps, and more time on interesting biological questions. We believe these work�ow
systems will become increasingly important as dataset size and complexity continue to grow. This
manuscript provides a directed set of project, data, and resource management strategies for adopting
work�ow systems to facilitate and expedite reproducible biological research. While the included data
management strategies are tailored to our own experiences in high-throughput sequencing analysis,
we hope that these principles enable biologists both within and beyond our �eld to reap the bene�ts
of work�ow-enabled data-intensive biology.
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