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Abstract

Microbial strains have closely related genomes but may have di�erent phenotypes in the same
environment. Shotgun metagenomic sequencing can capture the genomes of all strains present in a
community but strain-resolved analysis from shotgun sequencing alone remains di�cult. We
developed an approach to identify and interrogate strain-level di�erences in groups of metagenomes.
We use this approach to perform a meta-analysis of stool microbiomes from individuals with and
without in�ammatory bowel disease (IBD; Crohn’s disease, ulcerative colitis; n = 605), a disease for
which there are not speci�c microbial biomarkers but some evidence that microbial strain variation
may stratify by disease state. We �rst developed a machine learning classi�er based on compressed
representations of complete metagenomes (FracMinHash sketches) and identi�ed genomes that
correlate with IBD subtype. To rescue variation that may not have been present in the genomes, we
then used assembly graph genome queries to recover strain variation for correlated genomes. Lastly,
we developed a novel di�erential abundance framework that works directly on the assembly graph to
uncover all sequence variants correlated with IBD. We refer to this approach as dominating set
di�erential abundance analysis and have implemented it in the spacegraphcats software package.
Using this approach, we identi�ed �ve bacterial strains that are associated with Crohn’s disease. Our
method captures variation within the entire sequencing data set, allowing for discovery of previously
hidden disease associations.

Introduction
Sub-species groupings of microorganisms have functional di�erences that govern important genome-
environment interactions across diverse ecosystems. For example, ecotypes of Escherichia coli have
di�erent gene complements that allow each group to thrive in diverse environments like the gut, soil,
and freshwater [1]. Metagenomic sequencing data from communities of microorganisms contain
information about speci�c strains present in a sample, but strain-resolved insights are lacking due to
incomplete references or inability of current tools to retrieve such information [2]. Here we use strain
to refer to within-species variation that generates taxonomic grouping below the species level.

In�ammatory bowel disease (IBD) is a group of disorders that are characterized by chronic
in�ammation of the intestines which may in part be the result of host-mediated in�ammatory
responses to microorganisms [3]. IBD classically manifests in three subtypes depending on clinical
presentation, including Crohn’s disease (CD), which presents as discontinuous patches of
in�ammation throughout the gastrointestinal tract, ulcerative colitis (UC), which presents as
continuous in�ammation isolated to the colon and rectum, and undetermined subtype, which cannot
be clinically or biologically distinguished as CD or UC. Diagnosis can be clinically di�cult, with
rami�cations associated with incorrect treatment resulting in unnecessary patient morbidity.
Detection of microbial signatures associated with IBD subtype may lead to improved diagnostic
criteria and therapeutics that extend periods of remission. However, such signatures have thus far
remained elusive [4].

The microbiome of CD and UC is heterogeneous, and studies that characterize the microbiome often
produce con�icting results [4]. This is likely in part driven by large inter- and intra-individual variation
[5], but is also attributable to non-standardized laboratory, sequencing, and analysis techniques used
to pro�le the gut microbiome [4]. Dysbiosis is frequently observed in IBD, particularly in CD
[6,7,8,9,10], however dysbiosis alone is not a signature of IBD [5]. Dysbiosis is de�ned as a decrease in
gut microbial diversity that results in an imbalance between protective and harmful microorganisms,
leading to intestinal in�ammation [11].

https://github.com/spacegraphcats/spacegraphcats


Strain-level di�erences may account for some heterogeneity in IBD gut microbiome pro�les. A recent
investigation of time-series gut microbiome metagenomes found that one clade of Ruminococcus
gnavus is enriched in CD [12]. Further, this clade produces an in�ammatory polysaccharide [13,14].
While this clade is enriched in CD, its enrichment was previously masked from computational
discovery by concomitant decreases in other Ruminococcus species in IBD [12], highlighting the need
for strain-resolved analysis of metagenomic sequencing in the exploration of IBD gut microbiomes.

Given these features of the IBD gut microbiome, strain-resolved analysis may yield insights into the
dynamics of these communities. The two biggest obstacles to strain-level analysis of short read data
are the lack of strain representation in databases together with the challenge of haplotype-level
resolution in assembly and binning. While long reads have made strides toward resolving the latter
issue [15], in habitats like the gut where communities are dominated by single strains of microbes [16]
the largest barrier to strain-level analysis is the exclusion of data that does not match to reference
databases. New data analysis techniques are needed to make full use of strain level data.

K-mers, words of length k in nucleotide sequences, have previously been used for annotation-free
characterization of sequencing data [17,18,19]. K-mers are suitable for strain-resolved metagenome
analysis because their absence in reference databases does not preclude their analysis. Moreover, k-
mer analysis does not rely on marker genes which are largely conserved at the strain level, and k-mers
are suitable for species- and strain-level classi�cation [20,21]. Investigating all k-mers in metagenomes
is more computationally intensive than reference-based approaches [22], but data-reduction
techniques like FracMinHash sketching make k-mer-based analysis scalable to large-scale sequence
comparisons [23,24]. FracMinHash sketching sacri�ces the �ne-scaled resolution of reference-based
techniques but is representative of the full sequencing sample and can make use of all available
genomes [21], thus including strain-variable accessory elements that may be associated with diseases

Like sketches, assembly graphs also represent k-mers in a metagenome, but assembly graphs retain
important sequencing context and can aggregate known functional and taxonomic annotations,
recovering critical information lost through sketching approaches [25,26]. While assembly graphs have
been leveraged in metagenome analyses [28], their large size precludes analysis at scale. The
spacegraphcats tool is designed to tackle this issue, implementing algorithms that e�ciently reduce
the size of an assembly graph and enabling rapid querying and sequence retrieval [25]. These
algorithms center around dominating sets, which partition the graph into pieces by assigning every
node to a graph-localized neighborhood [25]. This simpli�ed graph enables e�cient queries: querying
with a sequence that overlaps any k-mer in a compact de Bruijn graph (cDBG) node returns all k-mers
(or all reads containing those k-mers) from the graph neighborhood. Genome queries often recover
sequences not in reference databases or de novo assemblies, which disproportionately include
sequences from both low coverage regions and highly variable portions of the graph (e.g. sequencing
reads that neither assemble nor bin) [25]. When a query has a containment index between 10-2 and
10-3 with the assembly graph, 20-40% of a target genome sequence is recovered from a metagenome
query, and for containment indices above 10-1 this increases to >80% [25]. Containment index is
calculated by comparing the relative size of the intersection to the union between k-mers in a query
and k-mers in a metagenome [29].

Here, we develop k-mer- and assembly graph-based techniques to perform a meta-analysis of stool
microbiome metagenomes from individuals with (CD, UC) and without (nonIBD) IBD [5,8,10,12,30,31].
Using these approaches, we detect a consistent signature of IBD subtype in fecal microbiome
metagenomes. We identify a small set of k-mers that are predictive of UC and CD, and �nd that these
k-mers originate from a core set of microbial genomes. We �nd that a stochastic loss of diversity in
this core set of microbial genomes is a hallmark of CD, and to a lesser extent, UC, as has been
previously demonstrated [4]. While reduced diversity is responsible for the majority of disease
signatures, we also �nd signatures of strains present in the disease state. Sequences associated with
these strains occurred more frequently in IBD metagenomes but are present in low abundance in



nonIBD metagenomes as well. Our approach provides a solution for strain-level analysis of short read
metagenomic data sets, and our �ndings provide future avenues for research into IBD therapeutics.

Results
We developed a computational approach to resolve sub-species level di�erences between groups of
short read shotgun metagenomes (Figure 1). While our pipeline relies on many published algorithms,
we developed two new approaches that, when combined with existing tools, generated insights into
microbial sequences associated with IBD subtype. After consistent pre-processing, we used
FracMinHash sketching to produce subsampled k-mer abundance pro�les of metagenomes that
re�ected the sequence diversity in a sample [21,23], and used these pro�les to perform metagenome-
wide k-mer association with IBD subtype. We refer to FracMinHash sketches as sketches or k-mer
abundance pro�les, and for simplicity, continue referring to the sub-sampled k-mers in a sketch as k-
mers. Retaining only k-mers associated with IBD, we used a minimum set cover approach to identify
the genomes that best encompassed these k-mers [21].

Next, we developed an approach to perform di�erential abundance analysis directly on assembly
graphs in order to recover all sequences that were di�erentially abundant in each IBD subtype when
compared to nonIBD. Using the genomes identi�ed by our k-mer association analysis, we �rst
performed assembly graph genome queries to recover all sequences associated with a given species
within a metagenome. For each genome query, we combined these sequences into a single assembly
graph, which we refer to as a metapangenome graph. We estimated the abundance of each piece in
this graph within each metagenome, and used these abundances to perform di�erential abundance
analysis.



Figure 1:  Overview of the metagenome analysis technique. Steps that are outlined in grey were developed in this
paper. Step 1: Using quality controlled sequencing reads from many metagenomes, we decomposed reads into k-mers
and subsample these k-mers using FracMinHash, thereby selecting k-mers that evenly represent the sequence diversity
within a sample. We then identi�ed interesting k-mers using random forests, and associated these k-mers with genomes
in reference databases. Step 2: For each metagenome, we constructed a compact de Bruijn assembly graph (cDBG) that
contains all k-mers from a metagenome. We used dominating sets to carve the graph into pieces. We queried this graph
with genomes associated with interesting k-mers identi�ed in Step 1, recovering sequence diversity nearby in the
assembly graph. We refer to these sequences as genome query neighborhoods. Step 2 is the work�ow published in [25].
Step 3: We combined genome query neighborhoods for a single genome from all metagenomes. We constructed a
cDBG from these sequences, and used a dominating set with a large radius to carve the graph into large pieces. Here,
we diagram construction of r=2 dominating set pieces, but in practice we used r=10. We estimated the abundance of k-
mers in each metagenome for each dominating set piece, and used these abundances to perform di�erential
abundance analysis.

We applied this approach to the analysis of IBD gut microbiomes via meta-analysis. Meta-analyses
have recently shown success in improving the power to detect microbial signatures of colorectal
cancer [32,33,34]. To this end, we identi�ed studies that performed metagenomic sequencing of
individuals with CD, UC, or nonIBD and combined these to perform a meta-analysis (Table 1, Table
S1). All studies pro�led fecal gut microbiomes via Illumina shotgun metagenome sequencing.
Individuals were from �ve distinct countries and seven cohorts (Table 1). In many studies, samples
were taken in time series to pro�le disease progression or individual response to treatment. In these



cases we included only the �rst sample in the time series so organized interventions would not skew
our results. In addition, many of the nonIBD samples, particularly those from the iHMP, pro�led sick
individuals that were not diagnosed with IBD, meaning some of these samples are not healthy
controls.

Table 1:  Six IBD shotgun metagenome sequencing cohorts used in this meta-cohort analysis.

Cohort Name Country Total CD UC nonIBD Reference

iHMP IBDMDB USA 106 50 30 26 [5]

PRJEB2054 MetaHIT Denmark, Spain 124 4 21 99 [10]

SRP057027 NA Canada, USA 112 87 0 25 [8]

PRJNA385949 PRISM, STiNKi USA 17 9 5 3 [12]

PRJNA400072 PRISM, LLDeep,
and NLIBD USA, Netherlands 218 87 76 55 [30]

PRJNA237362 RISK North America 28 23 0 5 [31]

Total 605 260 132 213

K-mers are weakly predictive of IBD subtype

We �rst sought an approach to compare many metagenomes without relying on reference databases,
de novo assembly, or annotations. We reasoned that FracMinHash sketches randomly subsample k-
mers to allow comparisons, which may provide an unbiased approach to quickly compare across
many metagenomes. In total, we pro�led 7,376,151 subsampled k-mers across all samples in all
cohorts, representing approximately 14 billion distinct k-mers in the original samples.

We detected variation correlated with IBD diagnosis in k-mer pro�les of gut metagenomes from
di�erent cohorts. We calculated a pairwise distance matrix using angular distance between k-mer
abundance pro�les to assess sample diversity. We performed principle coordinate analysis and
PERMANOVA with this distance matrix (Figure 2 A, B), using the variables study accession, diagnosis,
library size, and number of k-mers observed in a sample (Figure 2 B). Study accounted for highest
variation, emphasizing that technical artifacts or cohort diversity can introduce strong signals that
may in�uence heterogeneity in results across IBD microbiome studies but that can be mitigated
through meta-analysis [32]. The number of k-mers observed in a sample accounted for the second
highest variation, possibly re�ecting reduced diversity in stool metagenomes of CD and UC patients
(reviewed in [35]). Diagnosis accounted for a substantial amount of variation as well, indicating that
there is a small but detectable signal of IBD subtype in stool metagenomes.

To evaluate whether the variation captured by diagnosis is predictive of IBD subtype, we built random
forest classi�ers to predict CD, UC, or nonIBD subtype. To assess whether disease signatures
generalize across study populations, we used a leave-one-study-out cross-validation approach where
we built and optimized a classi�er using �ve cohorts and validated on the sixth. We built each model
six times to hone in on cross-study and cross-model signal. Given the high-dimensional structure of
this data set (e.g. many more k-mers than metagenomes), we �rst used the vita method of variable
selection to narrow the set of predictive k-mers in the training set [36,37]. Variable selection reduced
the number of k-mers used in each model by two orders of magnitude, from 7,376,151 to 28,684-
41,701 (mean = 35,673.1, sd = 4090.3) (Figure 2 C).

Using this reduced set of k-mers, we optimized each random forests classi�er on the training set,
producing 36 optimized models. We validated each model on the left-out study. The accuracy on the



validation studies ranged from 49%-77% (Figure 2 D), outperforming a previously published model
built on metagenomic data alone [30].

Figure 2:  Long nucleotide k-mers retain information about IBD subtype classi�cation. A. Principal coordinate
analysis of distance matrices obtained from comparing FracMinHash sketches with abundances and B. PERMANOVA
results that explain the variance in the principal coordinate analysis. Number of k-mers refers to the number of k-mers
in a sketch, while library size refers to the number of raw reads per sample. All tests were signi�cant at p < .001. C. Box
plots indicating the number of k-mers used to build each random forests model. Variable selection using the vita
method reduced the number of k-mers used to build each model. D. Heatmap indicating accuracy of each model on the
left-out validation study. Model performance varied by validation study, but models predicted IBD subtype better than
chance (1/3).

To understand which genomes were responsible for disease signatures detected by our models, we
anchored k-mers in the models against genomes in reference databases using sourmash gather [21].
Sourmash gather determines the minimum set of genomes in a database necessary to cover all of the
k-mers in a query [21]. We used the GTDB rs202 representatives database, which contains bacterial
and archaeal genomes, and the GenBank viral, fungal, and protozoa databases. We found that a
substantial fraction of genomes were shared between models, indicating there is a consistent
biological signal captured among classi�ers: of 3,889 total genomes detected across all classi�ers, 360
genomes were shared between all classi�ers (Figure 3, Figure S1, Table S2). The presence of shared
k-mers between classi�ers indicates that there is a consistent biological signal in metagenomes for
IBD subtype between cohorts.



K-mers that anchored to these shared genomes represented 65% of all k-mers used to build the
optimized classi�ers, but accounted for an outsize proportion of variable importance in the optimized
classi�ers. After normalizing variable importance across classi�ers, 74% of the total variable
importance was held by these k-mers. These k-mers contribute a large fraction of predictive power for
classi�cation of IBD subtype, and the genomes in which they are found represent a microbial core
that contains predictive power in IBD subtype classi�cation.

Given that 360 genomes anchored the majority of k-mers and variable importance across all models,
we were curious whether a smaller number of genomes could still retain the majority of variable
importance. Limiting genomes to those that could hold at least 1% of the normalized variable
importance, we found that 54 genomes accounted for 50% of the variable importance (Figure 3,
Figure S1, Figure S2, Table S2). We assumed these genomes represent the strongest candidates for
discriminating IBD subtype and focused on them for the remainder of our analyses.

Figure 3:  Tree of bacterial species that were predictive of IBD subtype in all models. Nodes are summarized to the
genus level. All taxa up to the class level are labelled. Taxa that could account for at least 1% of the normalized variable
importance across random forests models are colored and labelled. Node size and node color re�ect potential
normalized variable importance attributable to each taxonomic lineage with larger node sizes and darker color
representing larger variable importance; while normalized variable importance across models sums to one, some
sequences are shared across genomes making the total potential variable importance across all genomes larger than
one.

Genome queries into metagenome assembly graphs recover
neighborhoods of sequence variation and establish species
umbrellas



While we were able to identify the majority of k-mers that were important for predicting IBD subtype,
26% of k-mers remained unannotated. We hypothesized that these k-mers represented strain variable
sequences not in reference databases but belonging to species represented by annotated k-mers. To
investigate this hypothesis, we performed genome queries on assembly graphs of each metagenome
using the 54 candidate genomes that discriminated IBD subtype (Figure 1). Assembly graph genome
queries recover sequences in a metagenome that match the query, as well as those that are nearby in
the assembly graph, making queries akin to but more general than read mapping against reference
genomes (Figure 1) [25]. The resulting genome query neighborhood represents a species-level
umbrella that contains sequence variation from the metagenome associated with a query.

After performing genome queries, we re-anchored k-mers against the resulting query neighborhoods
as well as the databases used previously. We observed that the fraction of unassigned k-mers
decreased from 26% to 8% (Figure 4), supporting our hypothesis that many of these k-mers are
sequence variants belonging to species identi�ed in k-mers important for predicting IBD subtype. We
further observed that many other k-mers previously anchored by other genomes were reassigned to
the genome query neighborhoods (Figure 4). This suggests that the genome queries create species
umbrellas that represent sequence variation for the query genome itself as well as other closely
related genomes that occur within a metagenome.

Figure 4:  Alluvial plot depicting the set of genomes that anchored k-mers that were important for predicting
IBD subtype. The blocks on the left represent the breakdown of k-mer assignations from greedy exact matching against
databases alone, while the blocks on the right represent k-mer assignations after metagenome assembly graph queries.

IBD gut microbiomes have decreased diversity in strict
anaerobes that is punctuated by strain switches for some
facultative anaerobes

After recovering all sequences in metagenomes in the neighborhoods of the species that discriminate
IBD subtypes, we next sought to determine the speci�c genome segments that were di�erentially



abundant in IBD. Di�erential abundance analysis is a common step in metagenome analysis, however
it is typically applied to gene counts [38,39], which requires assembly or mapping prior to abundance
estimation. To avoid assembly or mapping and the accompanying loss of reads [40], we developed an
abundance estimation approach that works directly on the assembly graphs, enabling di�erential
abundance analysis from the assembly graph. Our abundance estimation approach was based on r-
dominating sets, an algorithm introduced in [25] that e�ciently computes the dominating nodes in a
cDBG so that every node is no more that distance r from a dominator. The dominating set is used to
carve the graph into pieces, each of which contains one dominating node. Here, we �rst build a
species-level assembly graph that contains neighborhood sequences for a given genome across all
metagenomes, which we call a metapangenome graph. We then partition the graph into pieces using
a large radius (r = 10). The large radius carves the graph into pieces that average 103 k-mers in size.
We next estimated the abundance of each piece within each metagenome using average k-mer
abundance. We also annotated the graph pieces using using k-mer overlap between genes of known
function and graph pieces. Using this information, we performed dominating set di�erential
abundance analysis using corncob [41], a statistical package that tests for di�erential relative
abundance in the presence of variable sequencing depth and excessive zeroes for unobserved
observations, conditions which occur in abundances from dominating sets. We tested di�erential
abundance at the 5% signi�cance level after correcting for multiple testing (see methods).

We applied this method for each of our genome queries, building 54 metapangenome graphs and
performing dominating set di�erential abundance analysis on each. We tested for di�erential
abundance in pieces that occurred in at least 100 metagenomes, since we sought di�erences that
characterized the majority of our samples within a group. Note that corncob �ts a model for each
dominating set piece and therefore does not require abundance information for all pieces [41]. On
average, this condition was met in 6.4% of dominating set pieces. Focusing on pieces that occurred in
many metagenomes increased the average piece size to 1088 k-mers, which is similar to the average
bacterial gene length of approximately 1000 base pairs [42] and should enable biologically meaningful
comparisons across groups.



Figure 5:  Dominating set di�erential abundance analysis revealed genome segments that were signi�cantly
di�erent in CD and UC compared to nonIBD. Results are organized by GTDB taxonomy, with a tree representing the
54 species and colored by family on the far left. The percent of dominating set pieces tested is labelled in grey, and the
percent of signi�cantly di�erentially abundant pieces are colored by increased (blue) or decreased (brown) abundance.

We found that the majority of species decreased in abundance in CD, and to a lesser extent, UC
(Figure 5). Many of these species are generally regarded as bene�cial bacteria. For example, nine of
the 54 genomes we investigated were Faecalibacterium prausnitzii, the phylogroups of which are
separated in the GTDB taxonomy but combined into a single species in the NCBI taxonomy. F.
prausnitzii is a key butyrate producer in the gut and plays a crucial role in reducing intestinal
in�ammation [43]. Similarly, Acetatifactor is a bile-acid producing bacteria associated with a healthy
gut, but limited evidence has associated it with decreased abundance in IBD [44]. These species, as
well as others that decreased in abundance in IBD, are strictly anaerobic (Figure 5), so these observed



trends are consistent with a shift toward oxidative stress during disease that is intolerable for many
gut microbes [45].

A substantial fraction of dominating set pieces were more abundant in CD than nonIBD in �ve
metapangenome graphs (Figure 5). These graphs represented sequences from species R. gnavus,
Enterocloster bolteae, Enterocloster sp005845215, Enterocloster clostridioformis, and Enterocloster
clostridioformis_A. We posit that the increased abundance in some genomic segments amid the
decrease in abundance of others represents strain switching that occurs in CD.

In support of this, when we annotated the di�erentially abundant pieces using KEGG orthologs, we
found that in some cases pieces that were increased in abundance and pieces that were decreased in
abundance were annotated with the same ortholog (mean = 1453.8, sd = 727.2 pieces representing
mean = 64, sd = 23.8 orthologs per graph, Figure S3, Table S3). These genes likely represent the
portion of the core genome shared by the strain(s) that is more abundant in CD and the strain(s) that
is more abundant in nonIBD, but that is encoded by distinct sequences. Some shared annotations
encoded single copy marker genes [46]. To con�rm that multiple strains of the same species were
represented by these sequences, we queried with these marker gene sequences, extracted the reads
associated with those graph pieces, and mapped the reads back to the marker gene sequence. We
then selected reads that aligned to the same portion of the marker gene and contained single
nucleotide variants, and BLASTed those reads against the NCBI nr database. For the subset of reads
that we tested, we con�rmed that di�erent strains of the same species were the best matches. This
demonstrates that mulitple strains of the same species were present in each species graph, and that
these strains were di�erentially abundant in CD compared to nonIBD.

In contrast to the annotations that were identi�ed among sequences that were increased and
decreased in abundance, many orthologs were only annotated among the pieces that were increased
in abundance in CD (mean = 1193.4, SD = 155.7, Table S4). Many of the same pathways were enriched
among these orthologs across the �ve species, including those associated with oxidative stress
response (cysteine and methionine metabolism, the pentose phosphate pathway) (Figure S3). The
oxidative branch of the pentose phosphate pathway regenerates NADPH, while cysteine is a precursor
for the antioxidant glutathione. Given this, we investigated the presence of reactive oxygen species-
scavenging orthologs [47]; sequences encoding superoxide dismutase (K04565), thioredoxin
reductase (K00384), and peroxiredoxin (K03386) were increased in abundance in CD for all �ve
species. Additionally, many enriched pathways were associated with virulence (quorum sensing,
�agellar assembly, bacterial chemotaxis, vancomycin resistance). Enrichment of speci�c metabolic
pathways is consistent with functional specialization of strains in di�erent environmental niches [48].

Table 2:  Maximum containment between sequences that were increased in abundance in CD and isolate genomes.

Metapangenome graph species Closest strain match Maximum
containment

Enterocloster clostridioformis Enterocloster clostridioformis MSK.2.78 0.71

Enterocloster bolteae [Clostridium] bolteae 90A5 0.68

Ruminococcus_B gnavus [Ruminococcus] gnavus RJX1122 0.66

Enterocloster clostridioformis_A [Clostridium] clostridioforme AGR2157 0.61

Enterocloster sp005845215 Enterocloster clostridioformis MSK.2.78 0.50

While dominating set di�erential abundance analysis identi�ed genomic sequences that were more
abundant in CD, the nature of short shotgun metagenomic sequencing reads precludes haplotype
phasing or lineage resolution [15], meaning our results likely represent genomic variants from many
distinct genomes that would not all naturally occur together in a single isolate genome. Therefore, to



identify isolate genomes that contain the genomic sequences that were more abundant in CD, we
searched the GTDB rs202 database with the signi�cantly di�erentially abundant sequences. On
average, the top matching isolate genome contained 63% of the sequences that were more abundant
in CD (Table 2).

One aerotolerant clade of R. gnavus was previously identi�ed as being enriched in CD [12], and has
been shown to produce a polysaccharide that induces the in�ammatory cytokine TNF-alpha [13]. The
three isolate genomes we identi�ed as containing the highest amount of sequences that were
increased in abundance in CD were among those that have been shown to induce TNF-alpha secretion
(RJX1122, RJX1127, RJX1128) [14]. This suggests our method identi�ed the same strain switch
previously discovered to occur in IBD [12,13,14]. In further support of this, we found that 17 of the 23
genes in the operon that encodes the proteins responsible for producing the in�ammatory
polysaccharide were annotated in the dominating set pieces that were more abundant in CD. These
genes were encoded across 66 dominating set pieces, with multiple neighboring genes in the operon
annotated in 6 of these dominating set pieces.

For two of the four Enterocloster species, the top matching isolate sequence was the same
(Enterocloster clostridioformis MSK.2.78). This points to overlap in the genomic sequences we
identi�ed as di�erentially abundant across these metapangenome graphs. Indeed, the average
Jaccard similarity between the sequences that were increased in CD in the Enterocloster graphs was
0.53, while the average max containment was 0.74. Given that a Jaccard similarity of 0.1 is required to
recover at least 80% of a genome via assembly graph query, which approximately corresponds to an
average nucleotide identity of 93% [49], and that species boundaries in GTDB are drawn at 95%
average nucleotide identity [50], the metapangenome graphs likely store genomic sequences
associated with both the query genome species and closely related species. However, the
metapangenome graphs presented here, as well as the di�erentially abundant sequences, contain
both common and distinct nucleotide sequences, suggesting that multiple closely related
Enterocloster species/genomes are associated with CD. Taken together, our ability to recover a
previously validated sub-species association with IBD (R. gnavus) suggests that the three new
Enterocloster isolates we identi�ed should be further investigated for their potential role in eliciting
CD-like symptoms in the gut.

Genomic sequences that are di�erentially abundant in IBD are
not exclusive to IBD

Since genome sequences belonging to many species were di�erentially abundant from nonIBD in CD
and UC, we next investigated whether there was a disease-speci�c microbiome in CD or UC – i.e.,
whether there are sequences from a species that were only observed in IBD. Using FracMinHash
sketches from the di�erentially abundant sequences, we identi�ed the di�erentially abundant
sequences in each metagenome and compared their occurrence and distribution across diagnoses.

In general, we found no evidence for disease-speci�c sequences among the 54 species we
investigated. Using FracMinHash sketches of the di�erentially abundant sequences for each species,
we counted the number of k-mers that were observed in di�erent sets of diagnoses. We observed
almost all sequences in at least some CD, UC, and nonIBD metagenomes (Figure 6, Figure S4). Across
all species, an average of 14.9% di�erentially abundant k-mers were unobserved in either CD, UC, or
nonIBD. These results in part explain heterogeneous study �ndings in previous IBD gut microbiome
investigations.



Figure 6:  Most di�erentially abundant sequences occur in metagenomes of individuals diagnosed with CD, UC
and non-IBD. Upset plot of k-mers that were increased in abundance in CD and their occurrence in CD, UC, and nonIBD
metagenomes. The bottom half of the plot highlights which diagnoses are included in each set, while the bar chart in the
top half of the plot shows the number of k-mers that were observed in that set. The bar chart is colored by the
metapangenome species graph in which the sequence was di�erentially abundant.

Discussion
In this paper, we present an assembly-free metagenome analysis framework for group association
discovery that is minimally reliant on reference databases. Our approach uses k-mers to discover
genomes associated with groups of metagenomes, and then recovers sequence variation from those
genomes and closely related genomes in the metagenomes. These sequences are organized in a
“metapangenome graph” which is then used to perform di�erential abundance analysis to discover
speci�c genomic sequences that di�er between groups.

We applied this method to perform a meta-analysis of fecal gut microbiome metagenomes from
individuals with CD, UC, and nonIBD and uncovered cross-study microbial signatures of IBD subtype.
The underlying etiology of IBD remains poorly understood with inconsistent microbiological �ndings
produced from di�erent studies [4]. The signatures we identi�ed demonstrate consistent loss of
diversity of speci�c microorganisms, particularly in CD. Among the background of generalized loss of
diversity, we observed that some genomic sequences increased in abundance while others decreased
in abundance for �ve species in CD. This pattern is consistent with strain switching, where one strain
is more abundant in CD and another is more abundant in nonIBD. For one species we identi�ed, R.
gnavus, this strain switching behavior was previously discovered via isolate sequencing and
metagenome mapping [12]. Our recovery of this pattern demonstrates the utility of our approach for
discovering sub-species level associations from metagenomic sequences alone, and opens the door
for additional discovery. Indeed, we identi�ed four additional species where strain switching occurred
in CD.



While our approach identi�ed genomic sequences that were more abundant in CD than nonIBD, the
nature of short read sequences precludes haplotype or lineage resolution directly from the
metagenomic data analyzed here. To circumvent this issue, we identi�ed isolate genomes that
encoded all of the genomic sequences that were more abundant in CD. These isolate genomes
represent candidate organisms for further research into the microbial component of CD
pathophysiology. As high �delity long read sequencing of microbiomes becomes increasingly common
[15], long reads can be integrated into the approaches introduced here, enabling lineage-resolved
association detection directly from sequencing data.

While we found conserved signatures in IBD subtype, we found no evidence for disease-speci�c
sequences within the gut microbiome. The observation that almost all di�erentially abundant
sequences for a given species occur in CD, UC, and nonIBD suggests the presence of ecotypes –
subspecies that are adapted to di�erent environments – rather than pathotypes – subspecies
associated with a speci�c disease. These patterns in part explain the inconsistent results generated in
IBD subtype characterization, where no consistent microbiological signal has emerged in human gut
microbiomes other than loss of diversity [4].

Our models consistently performed the most poorly on the iHMP cohort. The iHMP tracked the
emergence and diagnosis of IBD through time series pro�ling of emergent cases [5]. We selected the
�rst sample in each time series for this analysis, and given the relatively poor performance of these
models, this may suggest that disease onset is a distinct biological process. However, the inclusion of
the iHMP cohort in this analysis ensured that not all nonIBD samples were healthy controls and some
fraction were symptomatic cases that did not result in an IBD diagnosis [5].

While we apply our pipeline to IBD classi�cation, it is extensible to other large meta cohorts of
metagenomic sequencing data. This method may be particularly suitable for diseases such as
colorectal cancer, where a recent meta-analysis using a marker gene approach was successful in
classifying colorectal samples from healthy controls [32]. Beyond classi�cation of disease, our method
may bring strain-level resolution and generate hypotheses for further research. This may be
particularly useful in the context of tumor microbiomes as previous research has demonstrated that
strain-speci�c Helicobacter pylori and human papillomaviruses are risk factors for or directly transmit
certain cancers [51]. Strain-resolved methods may further this area of research.

The methods we used to perform the k-mer association analysis are modular and may be improved
by substituting parts of the pipeline with di�erent approaches. For example, we used abundances
from long nucleotide k-mers (k = 31) – which capture species-level sequence similarity [20] – as our
features. K-mers constructed from protein or other reduced alphabets may improve accuracy, as we
would expect more shared sequence content between metagenomes as well as a better
representation of functional content [52]. While this may improve classi�cation accuracy, switching to
reduced alphabet k-mers may not be desirable in the context of strain-speci�c di�erences which may
be obscured by these degenerate representations. Similarly, while we used random forests to to
perform k-mer association analysis, other machine learning or statistical techniques may improve
classi�cation accuracy. These approaches remain areas of future research.

The �rst part of the pipeline is disconnectable from the second part of the pipeline – that is, the
discovery of discriminatory genomes between groups is not a prerequisite for dominating set
di�erential abundance analysis as query genomes could be selected arbitrarily. Therefore, the
assembly graph di�erential abundance approach presented here could be applied to metagenomes
for samples originating from diverse environments. The requirements for the application of
dominating set di�erential abundance are threefold. First, there must be su�cient samples for
comparison (e.g., a minimum of three cases and three controls, with the typical caveats for small
sample sizes [53]). Second, we must have a genome with which to query the graph. And third, we
must have su�cient compute resources to run spacegraphcats [25]. These requirements make the



application of dominating set di�erential abundance analysis available to metagenomes from diverse
environments, not just the well-studied human gut microbiome.

While we present an initial pipeline that enables di�erential abundance analysis directly on assembly
graphs, we identi�ed several areas where our approach could be improved. First, implementing
approaches to better control graph piece size would be bene�cial. We heuristically selected r = 10 to
build the metapangenome graphs because this radius produced dominating set pieces with
approximately the same number of k-mers as the average bacterial gene for pieces that were present
in many metagenomes. However, the radius needed to meet this condition may change depending on
the diversity of the sequencing reads used to build the metapangenome graph. Diversity increases
with the complexity of the sequenced community, sequencing depth, and the number of communities
observed. Algorithms that either automatically select a radius that achieves a user-speci�ed average
piece size, or that produce more consistent piece sizes independent of diversity of the sequencing
data would provide �ner control of the graph structure and subsequent sequence comparisons.
Further, switching from a cDBG to a de Bruijn graph as the base spacegraphcats graph structure could
lead to more consistent piece sizes; cDBGs have variable node sizes because they combine nodes
without branching paths, while every node in a de Bruijn graph contains one k-mer. Second,
improving RAM e�ciency at high radii would enable more diversity to be represented in individual
graphs. In order to build the metapangenome graphs, we �rst hard-trimmed the input sequences to
remove low abundance k-mers, thereby decreasing the RAM needed to construct each graph.
Algorithmic changes that improve RAM e�ciency at high radii would obviate the need for hard
trimming, and increase the amount of diversity that could be represented in a single graph. Similarly,
improved performance would allow dominating set di�erential abundance analysis to be performed
directly on groups of metagenomes without the need to �rst identify species of interest via genome
queries.

Methods
All code associated with our analyses is available at github.com/dib-lab/2020-ibd (DOI:
10.5281/zenodo.6783208). An example repository for dominating set di�erential abundance analysis
is available at github.com/dib-lab/2022-dominating-set-di�erential-abundance-example (DOI:
10.5281/zenodo.6783363).

IBD metagenome data acquisition and processing

We searched the NCBI Sequence Read Archive and BioProject databases for shotgun metagenome
studies that sequenced fecal samples from humans with Crohn’s disease, ulcerative colitis, and
healthy controls. We included studies sequenced on Illumina platforms with paired-end chemistries
and with sample libraries that contained greater than one million reads. For time series intervention
cohorts, we selected the �rst time point to ensure all metagenomes came from treatment-naive
subjects.

We downloaded metagenomic FASTQ �les from the European Nucleotide Archive using the “fastq_ftp”
link and concatenated fast �les annotated as the same library into single �les. We also downloaded
iHMP samples from idbmdb.org. We used Trimmomatic (version 0.39) to adapter trim reads using all
default Trimmomatic paired-end adapter sequences ( ILLUMINACLIP:
{inputs/adapters.fa}:2:0:15 ) and lightly quality-trimmed the reads ( MINLEN:31 LEADING:2 
TRAILING:2 SLIDINGWINDOW:4:2 ) [54]. We then removed human DNA using BBMap and a masked
version of hg19 [55]. Next, we trimmed low-abundance k-mers from sequences with high coverage
using khmer’s trim-low-abund.py  [56].

file:///converted/www.github.com/dib-lab/2020-ibd/
https://github.com/dib-lab/2022-dominating-set-differential-abundance-example/


Using these trimmed reads, we generated FracMinHash signatures for each library using sourmash (k-
size 31, scaled 2000, abundance tracking on) [57]. FracMinHash sketching produces compressed
representations of k-mers in a metagenome while retaining the sequence diversity in a sample
[21,23]. This approach creates a consistent set of k-mers across samples by retaining the same k-mers
when the same k-mers were observed. This enables comparisons between metagenomes. We refer to
FracMinHash sketches as signatures, and to each sub-sampled k-mer in a signature as a k-mer. At a
scaled value of 2000, an average of one k-mer will be detected in each 2000 base pair window, and
99.8% of 10,000 base pair windows will have at least one k-mer representative. We selected a k-mer
size of 31 because of its species-level speci�city [20]. We retained all k-mers that were present in
multiple samples.

Principle Coordinate Analysis

We used Jaccard distance and angular similarity as implemented in sourmash compare  to pairwise
compare FracMinHash signatures. We then used the dist()  function in base R to compute distance
matrices. We used the cmdscale()  function to perform principle coordinate analysis [58]. We used
ggplot2 and ggMarginal to visualize the principle coordinate analysis [59]. To test for sources of
variation in these distance matrices, we performed PERMANOVA using the adonis  function in the R
vegan package [60]. The PERMANOVA was modeled as ~ diagnosis + study accession + 
library size + number of k-mers .

Random forests classi�ers

We built random forests classi�ers to predict CD, UC, and non-IBD status using FracMinHash
signatures. We transformed sourmash signatures into a k-mer (hash) abundance table where each
metagenome was a sample, each k-mer was a feature, and abundances were recorded for each k-mer
for each sample. We normalized abundances by dividing by the total number of k-mers in each
FracMinHash signature. We then used a leave-one-study-out validation approach where we trained six
models, each of which was trained on �ve studies and validated on the sixth. We built each model six
times, each time using a di�erent random seed. To build each model, we �rst performed vita variable
selection on the training set as implemented in the Pomona and ranger packages [37,61]. Vita variable
selection reduces the number of variables (e.g. k-mers) to a smaller set of predictive variables through
selection of variables with high cross-validated permutation variable importance [36]. It is based on
permutation of variable importance, where p-values for variable importance are calculated against a
null distribution that is built from variables that are estimated as non-important [36]. This approach
retains important variables that are correlated [36,62], which is desirable in omics-settings where
correlated features are often involved in a coordinated biological response, e.g. part of the same
operon, pathways, or genome [63,64]. Using this smaller set of k-mers, we then built an optimized
random forests model using tuneRanger [65]. We evaluated each validation set using the optimal
model, and extracted variable importance measures for each k-mer for subsequent analysis. To make
variable importance measures comparable across models, we normalized importance to 1 by dividing
variable importance by the total number of k-mers in a model and the total number of models.

Anchoring predictive k-mers to genomes

We used sourmash gather  with parameters k 31  and --scaled 2000  to anchor predictive k-
mers to known genomes [57]. Sourmash gather  searches a database of known k-mers for matches
with a query [21]. We used the sourmash GTDB rs202 representatives data base
(https://osf.io/w4bcm/download). To calculate the cumulative variable importance attributable to a
single genome, we used an iterative winner-takes-all approach. The genome with the largest fraction



of predictive k-mers won the variable importance for all k-mers contained within its genome. These k-
mers were then removed, and we repeated the process for the genome with the next largest fraction
of predictive k-mers. To genomes that were predictive in all models, we took the union of predictive
genomes from the 36 models. We �ltered this set of genomes to contain only those genomes with a
cumulative normalized variable importance greater than 1%.

r-dominating sets

The original spacegraphcats publication de�ned the dominating set as a set of nodes in the compact
de Bruijn graph (cDBG) such that every node is a distance-1 neighbor of a node in the dominating set
[25]. However, the algorithms as implemented allow this distance to be �exible and tunable [25]. We
refer to the largest distance that any node may be from a member of the dominating set as the
radius, r. Increasing the radius increases the average piece size while reducing the total number of
pieces in the graph.

Genome neighborhood queries with spacegraphcats

To recover sequence variation associated with genomes that were correlated with IBD subtype, we
used spacegraphcats search  to retrieve k-mers in the compact de Bruijn graph neighborhood of
each genomes (r = 1, k = 31) [25]. We then used spacegraphcats extract_reads  to retrieve the
reads and extract_contigs  to retrieve unitigs in the cDBG that contained those k-mers,
respectively.

Construction of the metapangenome graph

After retrieving genome neighborhood sequences from each metagenome, we combined these
sequences to build a single metapangenome graph (r = 10, k = 31). We increased the radius of the
metapangenome graph to produce larger level 1 dominating set pieces and to overcome highly
articulated cDBGs resulting from an abundance of sequencing data. While working with single-species
metapangenome graphs from many metagenomes reduced the graph size compared working with
complete metapangenome graphs, we performed two preprocessing steps prior to the
metapangenome graph generation. We combined all genome query neighborhood reads and
performed digital normalization and then truncated reads at k-mer that was not present in the data
set at least 4 times. These are heuristic steps that we believe are unlikely to remove biologically
important sequences.

Annotating the metapangenome graph

We implemented an approach to annotate dominating set pieces in spacegraphcats assembly graph.
This approach is implemented in spacegraphcats as multifasta_queries . This approach relies on
k-mer overlap between sequences in a reference multifasta �le and nodes in the cDBG and is
executed in a two-step approach. First, search.index_cdbg_by_multifasta.py  identi�es all
cDBG nodes that match to the k-mers in a FASTA sequence and promotes those annotations to all
cDBG records in the dominating set piece. Then, search/extract_cdbg_by_multifasta.py
extracts and summarizes information about these annotations and outputs it to a CSV �le.

We applied this annotation approach to the metapangenome graphs for species that were more
abundant in CD. To generate a reference multifasta gene �le to transfer annotations from, we �rst
downloaded all genomes of the species represented in the metapangenome graph and in the GTDB



rs202 database. We annotated open reading frames (ORFs) in these genomes using bakta [66],
combined and clustered predicted ORFs using cdhit-est [67], and performed ortholog annotation
using eggnog [68].

Calculating abundances metagenome abundances of
dominating set nodes in the metapangenome graph

We implemented an approach to calculate k-mer abundances for each graph piece in the level 1
dominating set. This approach is implemented in spacegraphcats in 
search/count_dominator_abundance.py . Using a spacegraphcats assembly graph and a set of

reads from a metagenome, the abundance of each dominating set piece is calculated by summing the
abundance of every k-mer in that piece within the metagenome.

We applied this abundance estimation approach to each metapangenome graph, estimating the
abundance of each dominating set piece within each metagenome.

Performing dominating set di�erential abundance analysis

We used Corncob to perform dominating set di�erential abundance analysis [41]. Corncob tests for
di�erential relative abundance in the presence of variable sequencing depth and excessive zeroes for
unobserved observations, conditions which occur in abundances from dominating sets [41]. To focus
on the most common sequencing variants and to reduce runtimes, we �rst �ltered to dominating set
pieces that were present in at least 100 (16.5%) metagenomes; corncob �ts a model to each
dominating set piece, so it does not require abundance information for all pieces. We performed
di�erential abundance testing using the bbdml()  function using a likelihood ratio test with formula 
= ~ study_accession + diagnosis  and formula_null = ~study_accession . We estimated
the number of k-mers in the quality controlled metagenome reads using ntcard and used this as the
denominator. We performed Bonferroni p value correction and used a signi�cance cut o� of 0.05.

To analyze the results of dominating set di�erential abundance analysis, we combined the
signi�cantly di�erentially abundant piece information with the results from the mulitfasta query
annotations, and with the ortholog annotations for the multifasta query genomes. We focused our
analysis on KEGG orthologs. When a single gene was annotated by eggnog with multiple KEGG
orthologs, we selected the �rst match. We identi�ed the set of KEGG orthologs that were annotated
among pieces that increased in abundance and pieces decreased in abundance in CD compared to
nonIBD. To identify single copy marker genes within this set, we used the marker gene sequences with
an average copy of one in [46]. We then selected at least one marker gene for each species, focusing
on rpl  sequences that were only annotated on two di�erentially abundant pieces in the graph
(Enterocloster clostridioformis, rplT; Ruminococcus_B gnavus, rplQ; Enterocloster clostridioformis_A,
rplO, rplC; Enterocloster sp005845215, rplO; Enterocloster bolteae, rplC). We queried with the marker
gene sequence that was used to perform the multifasta annotation and extracted the reads
associated with that graph piece using spacegraphcats extract_reads . We then mapped the
extracted reads back to the query sequence using bwa mem  [69]. We visualized alignments in the
Integrative Genomics Viewer [70] and selected reads that overlapped the same coordinates in the
reference gene but that had di�erent complements of single nucleotide polymorphisms. We BLASTed
these reads using blastn against the NCBI nr database and found the best strain-level matches.

We next identi�ed KEGG orthologs that were only annotated in the either the pieces that were
increased or decreased in abundance in CD compared to nonIBD. We performed KEGG enrichment
analysis using clusterPro�ler enricher  [71], using TERM2GENE as all KEGG orthologs with pathway
mappings and with argument maxGSSize = 500 . We considered pathways enriched to be enriched



which had adjusted p values < 0 .05. Lastly, we searched for the presence of KEGG orthologs that
quench reactive oxygen species using orthologs de�ned in [47].

Searching for isolates that contained di�erentially abundant
genomic sequences

To identify isolate genomes that contained sequences that were in CD, we searched the GTDB rs202
database. We generated FracMinHash signatures (k = 31, scaled = 2000) of di�erentially abundant
sequences using sourmash sketch . We searched GTDB rs202 using sourmash search , using
parameter --max-containment . We �ltered results to only include isolate genome sequences (e.g.,
removed metagenome-assembled genomes) and selected the top match as the best match.

Searching for metagenomes that contained di�erentially
abundant genome sequences

We intersected FracMinHash signatures (k = 31, scaled = 2000) of di�erentially abundant sequences
and query neighborhoods for each genome query, producing hashes that were di�erentially
abundant and observed within each metagenome. We combined these hashes across diagnosis
conditions (CD, UC, and nonIBD) and used the complexUpset R package to visualize the intersection
size across conditions.
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Figure S1:  Phylogenetic tree of 360 bacterial species that were predictive of IBD subtype in all models. Tree was
built from the GTDB rs202 tree with all tips except those represented by the 360 genomes removed. Tree tips are
labelled by genomes that anchored at least 1% of the normalized variable importance. The inner ring annotates the rank
of the genomes, with the genome holding the most normalized variable importance across models ranked as 1. The
outer ring is the species name within the GTDB database.



Figure S2:  Fifty-four genomes are important across models and anchor the majority of variable importance..
The bottom panel depicts a heat map of the scale variable importance contributed by k-mers that anchored to each of
the top 54 genomes that were important for predicting IBD subtype. Models are labelled by the validation study and by
the random seed used to build the model.Rank corresponds to the genome that anchored the most variable
importance. Rank:species can be decoded using the tree in Figure S1. The top panels depict bar charts that correspond
to the minimum (lower) or maximum (upper) variable importance a genome could anchor. The minimum variable
importance was estimated following the sourmash gather algorithm, where each important k-mer was assigned to only
one genome, and the genome it was assigned to was determined by a greedy winner-takes-all approach. Therefore, in
the minimum bar chart, variable importance attributable to a k-mer was only summed once per k-mer, even if that k-
mer occurred in multiple genomes. The maximum variable importance was estimated by allowing k-mers to be
anchored to multiple genomes, so all k-mers were assigned to all possible genomes even if that meant a k-mer was
assigned multiple times.



Figure S3:  Pathways that were enriched among sets of di�erentially abundant sequences in CD compared to
nonIBD. The x axis represents the number of orthologs identi�ed in the pathway, while the y axis annotates the
pathway. Top: Some dominating set pieces that signi�cantly increased in abundance were annotated as the same KEGG
orthologs as dominating set pieces that were signi�cantly decreased in abundance. Many of these pathways encode
core functions. Middle: KEGG pathway enrichment from KEGG ortholog annotations that were only observed in
dominating set pieces that were signi�cantly increased in abundance in CD. Bottom: KEGG pathway enrichment from
KEGG ortholog annotations that were only observed in dominating set pieces that were signi�cantly decreased in
abundance in CD.



Figure S4:  Most di�erentially abundant sequences occur in metagenomes of individuals diagnosed with CD, UC
and non-IBD. Upset plot of k-mers that were decreased in abundance in CD and their occurrence in CD, UC, and nonIBD
metagenomes. The bottom half of the plot highlights which diagnoses are included in each set, while the bar chart in the
top half of the plot shows the number of k-mers that were observed in that set. The bar chart is colored by the
metapangenome species graph in which the sequence was di�erentially abundant.


