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Abstract

An estimated 2 billion species of microbes exist on Earth with orders of magnitude more strains.
Microbial pangenomes are created by aggregating all genomes of a single clade and re�ect the
metabolic diversity of groups of organisms. As de novo metagenome analysis techniques have
matured and reference genome databases have expanded, metapangenome analysis has risen in
popularity as a tool to organize the functional potential of organisms in relation to the environment
from which those organisms were sampled. However, the reliance on assembly and binning or on
reference databases often leaves substantial portions of metagenomes unanalyzed, thereby
underestimating the functional potential of a community. To address this challenge, we present a
method for metapangenomics that relies on amino acid k-mers (kaa-mers) and metagenome assembly
graph queries. To enable this method, we �rst show that kaa-mers estimate pangenome
characteristics and that open reading frames can be accurately predicted from short shotgun
sequencing reads using the previously developed tool orpheum. These techniques enable
pangenomics to be performed directly on short sequencing reads. To enable metapangenome
analysis, we combine these approaches with compact de Bruijn assembly graph queries to directly
generate sets of sequencing reads for a speci�c species from a metagenome. When applied to stool
metagenomes from an individual receiving antibiotics over time, we show that these approaches
identify strain �uctuations that coincide with antibiotic exposure.

Introduction
Microbes are the most species-rich category of organisms on Earth [1], comprising an estimated 2
billion species, and yet fewer than 0.01% of species’ genomes are currently deposited in NCBI
Genomes [2], their full diversity is under-described. Short read metagenomic sequencing has
expanded knowledge of microbial communities and diversity [3,4,5]. In particular, metagenome
assembly and annotation have produced catalogs of metagenome-assembled genomes and genes,
revealing new species and functions previously unobserved in cultured organisms [3,4,6].

Along with advances in metagenome sequencing and analysis, the concept of “metapangenomics” has
arisen as a framework for understanding how sets of metagenome-derived genes that are
attributable to a group of organisms correlate with environmental parameters [7,8,9].
Metapangenomic methods borrow heavily from pangenome analysis. Pangenomes comprise all
genomic elements – usually open reading frames or genes – found within a group of organisms and
re�ect the metabolic and ecological plasticity of that group [10,11]. The pangenome is divided into
core and accessory genes, where core genes are shared by almost all members in the group and
accessory genes are not. Core genes often encode primary metabolism or other functions necessary
for a group to live in a given environment [12], while accessory genes encode functions that facilitate
adaptation to changing environments [11]. The size of the pangenome (e.g. number of distinct
sequences) re�ects the diversity of the organisms in a pangenome (population size, number of
organisms sampled) as well as the ability of those organisms to adapt to di�erent niches [10]. Open
pangenomes are those which increase inde�nitely in size when adding new genomes, while closed
pangenomes do not.

While pangenomes are traditionally inferred from genomes created from lab-cultured isolates
(“isolates”), metapangenomics extends the ecological framework of pangenomics to metagenomes.
Metapangenomics gives insight into the genes that support speci�c environmental adaptations by
applying pangenome methods to metagenome assembled genomes (MAGs) [8], or by mapping
metagenomes against isolate-inferred pangenomes [7]. Both methods give valuable insight into the
presence and distribution of functional content in natural microbial communities, but either may
introduce biases associated with unknown sequencing content [13]. MAGs are often incomplete or



unrecoverable due to low sequencing coverage or large amounts of variation caused by SNPs, indels,
rearrangements, horizontal gene transfer, sequencing error, and so on. Sequencing variation causes
short read assemblers to produce unbinnable short contiguous sequences. Unbinned sequences are
disproportionately comprised of genomic islands and plasmids [14], hot spots for evolution that
support microbial adaptation to changing environments [15]. In contrast, read mapping against
isolate-inferred pangenomes may miss functional content present in the metagenome but absent
from references, especially for unknown or under-represented species.

These issues are not exclusive to metapangenome inference, and many recently developed analysis
strategies overcome some of these biases. These techniques largely rely on k-mers, words of length k
in DNA or protein sequences. Metagenome k-mer pro�les contain all sequences in a metagenome,
including those which may not assemble or bin, or which aren’t in reference databases. Long k-mers
are also taxonomy-speci�c, where increasing k-mer length leads to sub-species discriminatory power
[16,17]. The ability to distinguish between species without alignment or assembly have popularized
the use of k-mers for metagenome analysis, primarily through lightweight sketching and compact de
Bruijn assembly graphs (cDBGs). Lightweight sketching facilitates fast and accurate sequence
comparisons between potentially large data sets through random but consistent sub-sampling
[18,19]. cDBGs maintain connectivity between k-mers and organize them into species-speci�c
neighborhoods [20,21].

To more fully represent the functional potential in metapangenomes, we present an analysis
approach that relies on amino acid k-mers and assembly graph queries to estimate microbial
(meta)pangenomes. This approach for metapangenome estimation is minimally reliant on reference
databases and is assembly-free.

Results
In an e�ort to reconstruct metapangenomes without loss of information from assembly and binning
[14,20,21,22,23,24], we demonstrate a pipeline that relies on k-mers and assembly graphs for
metapangenome estimation (Figure 1). We �rst show that amino acid k-mers (kaa-mers) accurately
estimate microbial pangenomes by comparing amino acid pro�les of proteomes (translated coding
domain sequences) against the proteomes themselves (Figure 1 A). To derive amino acid k-mers
directly from shotgun metagenome reads, we next demonstrate the accuracy of a tool called
orpheum for open reading frame prediction from short sequencing reads (Figure 1 B). We use
assembly graph genome queries to retrieve species-speci�c reads from the metagenome, predict
open reading frames from those reads using orpheum, and build a metapangenome using protein k-
mers (Figure 1 C). We then apply this method to species present in time-series metagenomes from a
human gut microbiome.



Figure 1:  Overview of the pipeline used to build metapangenomes. Approaches that were developed or tested in
this manuscript are outlined in grey. A) We tested whether amino acid k-mers could accurately represent bacterial and
archaeal pangenomes. Using genomes annotated with prokka, we compared pangenomes built with roary, a �eld-
standard pipeline, against pangenomes built with kaa-mer sketches. B) We tested whether open reading frames could
be predicted directly from short sequencing reads using the tool orpheum. This panel is modi�ed from [25]. C) We
combined this approaches with metagenome assembly graph genome queries to estimate metapangenomes directly
from metagenomes without assembly or binning. The blue and orange lines correspond to steps tested in panels A and
B. The work�ow presented in steps 1-3 of panel C is published in [21].

Protein k-mers accurately estimate characteristics of microbial
pangenomes

Pangenomes from isolates are typically built by assembling each isolate genome and predicting genes
(open reading frames), clustering gene sequences from all genomes into a non-redundant set, and
estimating the presence/absence or abundance of each gene in each genome. To determine whether
bacterial and archaeal pangenomes could be constructed from protein k-mers, we compared
pangenomes estimated from genes against those estimated from k-mers. We compared pangenomes
from 23 species belonging to 23 phyla in the GTDB taxonomy [26], with pangenome size ranging from
20-972 genomes (mean = 203 genomes, median = 44 genomes) (Figure S1). For each pangenome, we
computed the R2 between the total number of genes to the total number of k-mers, and the number
of unique genes to the number of distinct k-mers within each genome. We also tested the similarity of
presence/absence pro�les between pangenomes constructed with di�erent methods using the
Mantel test [27].



The strength of the relationship between k-mers and genes varied dramatically for some
pangenomes. Both k-mers and genes are highly correlated in DNA or protein space for most
pangenomes, while a few pangenomes were outliers with low correlations (Figure S2). We
investigated pangenomes more closely to determine the source of the poor correlations and found
that they were caused by the presence of many frameshifted proteins, one of many potential criteria
for exclusion of GenBank genomes from RefSeq. For example, Leptospira interrogans had an R2 of
0.12 between the total number of genes and k-mers in genomes in the pangenome, but 21 of 317
genomes contained frameshifted proteins. Removing genomes with many frameshifted proteins
increased the R2 to 0.87 (Figure 2 A). This trend was consistent across pangenomes, where
pangenomes with one or more frameshift-excluded genome had signi�cantly lower R2 values
between total number of genes and k-mers per genome than pangenomes without (Welch Two
Sample t-test, estimate = -0.36, p = 0.003) (Figure 2 B). Other RefSeq exclusion criteria did not impact
the correlation between the total genes and k-mers per genome for a given pangenome.

A range of k-mer sizes in amino acid alphabets had comparable performance. Using pangenomes that
contained no genomes excluded from RefSeq for containing many frameshifted proteins (n = 13), we
found that k-mer size had little impact on the accuracy of pangenome estimation (Figure 2 C). This is
likely because the genomes of the same species are closely related, so protein k-mers are su�cient to
overcome minor genomic variations such as those introduced by codon degeneracy or evolutionary
drift [28]. The one exception was for nucleotide k-mers (k = 31), which did not correlate as strongly
with gene-based pangenomes. This supports the use of amino acid k-mer encodings over nucleotide
k-mers for construction of pangenomes. Given that neither encoding nor k-mer size impacted these
performance metrics, we selected protein k-mers with k = 10 to complete the rest of our analysis as
this combination was the only combination to fall among the top �ve performers across all three
metrics. In addition, protein k-mers of length 10 have recently been shown to perform well for
comparisons across variable taxonomic distances [17].



Figure 2:  Amino acid k-mers accurately estimate characteristics of bacterial and archaeal pangenomes. A, B)
Genomes that are excluded from RefSeq for having many frameshifted proteins reduce similarity between gene- and k-
mer-based pangenomes. A) Scatter plot of the total number of genes and k-mers per genome for the species Leptospira
interrogans, where each point represents a single genome in the pangenome. Removing genomes �agged with RefSeq
exclusion criteria “many frameshifted proteins” improves the correlation between these variables. The light grey line
corresponds to regression results when all points are used, while the dark grey line corresponds to regression results
when �agged genomes are removed. B) Box plot of R2 values between the total number of genes and k-mers per
genome. Pangenomes that contain genomes with the RefSeq exclusion criteria of “many frameshifted proteins” have
signi�cantly lower R2 values. C) Box plots representing the distribution of R2 values for linear models (Total, Unique) or
statistic values for mantel tests (Mantel). Only pangenomes that do not contain genomes with the RefSeq exclusion
criteria “many frameshifted proteins” are plotted. K-mer size corresponds to the number of amino acid sequences used
for the k-mer for all k-mers except k = 31, which corresponds to the number of nucleotides. Total corresponds to
correlations between the total number of distinct genes and k-mers in a genome. Unique corresponds to correlations
between the number of unique genes and k-mers in genome. Mantel corresponds to mantel tests between the gene
and k-mer presence-absence matrices. D) Pangenome metrics strongly correlate between gene- and k-mer-based
pangenomes. Pangenome categories core, shell, and cloud refer to genes or k-mers shared between the majority
(>95%), some, or singleton genomes in the pangenome. Alpha is a value from Heaps law used to estimate whether a
pangenome is open or closed.

We next investigated whether other pangenome metrics were well correlated between our k-mer-
based method and the gene-based method roary (see Methods for details). For 13 pangenomes, the
percent of k-mers or genes predicted to be part of the core, shell, or cloud pangenome was strongly
correlated (Figure 2 D). The content of the core genomes was also similar between pangenomes built



with di�erent methods. Focusing on genes or k-mers shared between all genomes in a pangenome,
and limiting our inquiry to pangenomes with at least �ve genes shared between all genomes (n = 11),
we found core k-mers contained an average of 83.9% (SD = 15.4%) of sequences in core genes, while
core genes contained an average of 73.5% (SD = 16.9%) of sequences in core k-mers. This indicates
congruence in the functional content represented by the core fractions of both pangenome types.
Lastly, we compared whether pangenomes would be designated as open or closed by calculating the
alpha value for the Heaps law model [29]. Alpha values were strongly correlated between gene- and k-
mer based pangenomes (Figure 2 D).

Taken together, these results show that reduced alphabet k-mers can accurately estimate key
characteristics of pangenomes from bacterial and archaeal genomes.

K-mer methods accurately predict open reading frames in
short sequencing reads

We next sought to determine whether open reading frames could be accurately predicted directly
from short sequencing reads, as this would enable k-mer-based pangenome analysis without
assembly. Without accurate open reading frame prediction, reads would need to be translated into all
six translation frames prior to k-mer decomposition. This would in�ate the number of k-mers and
decrease similarity between genomes.

We evaluated whether orpheum, a tool recently developed to predict open reading frames in
Eukaryotic short reads [25], could also perform this task in bacterial and archaeal sequences.
Orpheum predicts open reading frames by comparing reduced alphabet k-mers in six frame
translations of short sequencing reads against those in a database (containment) and assigns an open
reading frame as coding if containment exceeds a user-de�ned threshold [25]. To evaluate orpheum,
we constructed a database containing all k-mers in coding domain sequences from genomes in GTDB
rs202. Using representative genomes from the 23 species above, as well as 20 additional RefSeq
genomes not in the GTDB rs202 database, we simulated short sequencing reads either from coding
domain sequences or non-coding sequences and used these reads to test orpheum.

Using default parameters, orpheum accurately separated coding from non-coding reads when reads
were simulated from genomes in GTDB (Figure 3 A). On average, 5.3% (SD = 2.8%) of reads that were
coding were incorrectly predicted to be non-coding, while 4.9% (SD = 1.5%) of reads that were non-
coding were incorrectly predicted to be coding. For reads simulated from genomes not in GTDB,
orpheum recovered the majority of coding reads when genomes of the same species were in the
database (Figure 3 A,B). On average, 30.2% (SD = 27.1%) of reads that were coding were predicted to
be non-coding, while 4.8% (SD = 5.5%) of reads that were non-coding were predicted to be coding.
Accuracy decreased with increasing taxonomic distance between the query genome and the closest
relative in the database (Figure 3 B).

For genomes that had at least species-level representatives in GTDB, the largest source of error was
non-coding reads being predicted as coding (Figure 3 A). We hypothesized that these reads originated
from pseudogenes as these sequences would likely not be annotated as coding in the genomes from
which the reads were simulated from, but may retain some k-mers contained in the database. To
assess this hypothesis, we used annotation �les produced by the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP), which annotates pseudogenes, for the 23 genomes for which these �les
were available [30,31]. On average, 12.4% (SD = 13.8%) of non-coding reads that were predicted to be
coding fell within pseudogenes annotated by the PGAP pipeline. We then BLASTed a subset of the
remaining non-coding reads that were predicted to be coding against the NCBI nr database. All reads
we investigated had at least one match at 100% identity to protein sequences in the database,
suggesting our test genomes contained additional pseudogenes not annotated by PGAP, or that the



software we used to predict open reading frames missed some coding sequences (see Methods).
Because this method of open reading frame prediction cannot distinguish pseudogenes from genes, it
may not be appropriate for species with many pseudogenes.

Some coding sequences were also predicted to be non-coding. We hypothesized that this was caused
by sequencing error introduced into the simulated reads. We mapped the simulated reads against the
coding domain sequences from which they were derived and calculated mapping error rates. While all
reads mapped, the error rate was higher for reads that were predicted to be non-coding than those
predicted to be coding (Welch Two Sample t-test, estimate = 0.00523, p < 0.001).

Protein k-mers from predicted open reading frames in the simulated short sequencing reads
recapitulated similarity between genomic coding domain sequences. We estimated the Jaccard
similarity between genomes using kaa-mers (k = 10) from annotated coding domain sequences, and
compared this against Jaccard similarity between genomes using kaa-mers from predicted open read
frames in the simulated short sequencing reads. Genomes that were most similar in one matrix were
also most similar in another matrix (Mantel statistic = 0.9975, p < 0.001). The average similarity among
all pairwise comparisons for the coding domain sequences was 2.6%, and this decreased to 2.5%
when using the open reading frames predicted from reads. This demonstrates that information
recovered from open reading frame prediction on short reads is similar to that derived directly from
the genome sequence.

The majority of predictive capability originated from species-level databases. We performed ORF
prediction using just species-level databases for genomes that had at least a species-level
representative in GTDB, and compared this against ORF prediction using the full GTDB database. On
average, there was no change between the percent of reads derived from coding domain sequences
when a species-level database was used versus when all of GTDB was used to predict open reading
frames (Figure S3).

Decreasing the Jaccard containment threshold increased the sensitivity and speci�city of ORF
prediction when there are no closely related genomes in the database (Figure 3 C, Table 1). The
Jaccard containment threshold controls the �nal prediction of coding vs. non-coding, as well as the the
number of open reading frames which a read is translated into. On average, increasing the rank of the
closest taxonomic relative in the database by one taxonomic level decreased the optimal Jaccard
containment threshold by 0.13. We note that orpheum performed well, achieving sensitivity > 0.9 or
better, when genomes of the same strain, species, and genus are present, but decreases signi�cantly
when the next closest relative is at the family level (Figure 3 C).

Table 1:  Jaccard containment thresholds that maximize the Youden’s index depending on the taxonomic rank of the
closest relative in GTDB.

Jaccard threshold closest rank mean sensitivity mean speci�city mean Youden’s
index

0.47 genome 0.988 0.971 0.959

0.39 species 0.941 0.961 0.902

0.17 genus 0.790 0.862 0.653

0.07 family 0.593 0.878 0.471

Overall, these results show that open reading frames can be accurately determined from short
sequencing reads when closely related proteomes are available.



Figure 3:  Orpheum correctly assigned short sequencing reads as coding or non-coding and selects the correct
open reading frame. A) Percent of simulated coding or non-coding sequences predicted as coding, non-coding, or
discarded based on quality metrics (see methods). Genomes are split by those in GTDB and those not in GTDB.
Genomes not in GTDB are labelled by taxonomic assignment from GTDB-tk. Predictions were made using default
parameters (Jaccard containment = 0.5). B) Boxplots of the percent of coding reads that were recovered by Orpheum,
separated by the level of taxonomic assignment achieved by GTDB-Tk. Orpheum recovers more coding sequences when
there are closely related genomes in the database. C) Receiver operating curves for the Jaccard containment thresholds.
Curves are separated by the level of taxonomic assignment achieved by GTDB-Tk, and values are averaged across all
genomes that fell within those categories. The best Jaccard threshold decreases when there are fewer closely related
genomes in the database.

K-mer-based metapangenomics combined with assembly
graphs reveals strain dynamics

Given that amino acid k-mers accurately estimated pangenomes, and that the correct open reading
frame could be predicted reliably from short sequencing data, we next combined these approaches to



perform metapangenome analysis from short read shotgun metagenomes. We used 12
metagenomes from a single individual sampled over the course of a year by the Integrated Human
Microbiome Project (iHMP) [32]. The individual was diagnosed with Crohn’s disease, a sub type of
in�ammatory bowel disease characterized by in�ammation along the gastrointestinal tract. The
individual received three courses of antibiotics over the year and each course was separated by weeks
without antibiotics (Figure 4 A).

We estimated the metapangenome for each species that was detected in all 12 metagenomes and
that accounted for at least 2% of reads across metagenomes, for a total of six metapangenomes
(Figure 4 A). To obtain all sequencing reads that originated from genomes of these species, we
performed assembly graph genome queries [21]. Assembly graphs contain all sequences in a
metagenome, and assembly graph queries return sequences in the metagenome that are either in the
query or nearby to the query in the graph. Assembly graph genome queries return sequencing reads
that originate from genomes in the metagenome that have as little as 0.1 Jaccard similarity
(approximately 93% average nucleotide identity (ANI) [17]) to the query genome [21]. After retrieving
reads in this way, we predicted open reading frames using orpheum. We used species-level databases
as these were successful in the context of isolate genomes not in the database (see above) and
because they would be more likely to �lter out reads beyond the species boundary (95% ANI [33]) that
were returned by assembly graph queries. Using the predicted amino acid sequences, we built kaa-
mer metapangenomes for each of the six species (Figure 1 C, Figure S4, Table S1).

We compared these metapangenomes against reference pangenomes built using genomes of the
same species in GTDB and against de novo metapangenomes built from MAGs of the same species
that were assembled and binned from these samples (see Methods). Almost all sequences from the
reference pangenome occurred within the kaa-mer metapangenomes (Figure 4 B), indicating we
recovered the majority of sequencing variation contained within the reference pangenome. Further, a
large fraction of sequences were shared between the de novo metapangenome and the kaa-mer
metapangenome (Figure 4 B), indicating we also recover the majority of variation captured by
assembly and binning.

A large fraction of k-mers were only represented in the kaa-mer metapangenome (Figure 4 B). To
determine whether these sequences represented true biological variation from our query species and
not contamination from other species, we next iteratively mapped the reads that were used to build
the kaa-mer metapangenome against the reference pangenome and the de novo metapangenome
(Figure 4 C). The majority of reads mapped against the reference pangenomes (mean = 92.2%, SD =
12.4%), a few of the unmapped reads mapped against the de novo metapangenome (mean = 0.8%, SD
= 1.3%), and 7.1% (SD = 12.3%) of reads did not map. We repeated this process a second time but
mapped in amino acid space. Mapping in amino acid space improves sensitivity over nucleotide
mapping [34]. The fraction of reads that mapped increased by an average of 1.7% (Welch Two Sample
Paired t-test, estimate = 1.9, p < 0.001), accounting for 94.6% of total reads and indicating that a
substantial fraction of distinct sequences in the kaa-mer metapangenome represent diverged
sequences with similar amino acid sequences.

On average, 5.4% (SD = 12%) of reads from the kaa-mer metapangenome were unaccounted for after
mapping against other (meta)pangenomes. We assembled and annotated these reads, and BLASTed
the 88 resultant protein sequences against the NCBI nr database. Of 56 predicted genes with a BLAST
hit, 76.8% matched sequences from the same species or closest speci�ed lineage level as the top hit.
This suggests our method recovers functional sequences even if those sequences are not in MAGs or
in reference databases (in this case, in NCBI nr but not GTDB).

Visualizing the kaa-mer metapangenomes alongside sequencing depth information, we observed
dynamics in the presence of species (Figure S4 A) or strains (Figure S4 B) in response to antibiotic
administration. The �uctuation of the presence of species indicates that antibiotic administration



impacted the community structure of the gut microbiome, as is expected [35]. This is exempli�ed by
periodic blooms of Enterocloster bolteae, an organism associated with disturbance succession [36].

Similarly, we detected changes in accessory kaa-mers, the majority of which appeared or disappeared
on or after the start of metronidazole administration at week 13 (Figure S4 B). Metronidazole targets
anaerobic bacteria via reduction by pyruvate:ferredoxin oxidoreductase system which creates an
electron sink that produces free radicals that are toxic to cells [37]. Metronidazole treatment
disproportionately impacts the presence of anaerobes in the gut microbiome [38]. We hypothesized
that �uctuations in accessory kaa-mers re�ected strain-level turn over in the community. To con�rm
this, we compared the nucleotide k-mer content in each query neighborhood against the GTDB
database to determine which strains were present (Figure 4 D). We used a k-mer size of 51, as this is
indicative of strain-level similarity [16,17]. In each of the three species we investigated, we identi�ed
di�erent patterns of strain �uctuations. In Bacteroides uniformis, only one strain of B. uniformis
(BIOML-A27) was present until week 25, when another strain appears (BIOML-A2). In Parabacteroides
distasonis, the dominant strain switches at week 13 (20_3 to OF01-14), coincident with other strains
appearing (BIOML-A21, BIOML-A26, BIOML-A32). Lastly, in Phocaeicola vulgatus, the dominant strain
does not change through the time course, but multiple other strains are detected with one strain
switch occurring at week 13 (H23 and AM38-19 to VPI-4496.2).

Taken together, these results demonstrate that kaa-mer metapangenomes built from metagenome
assembly graph neighborhoods can capture species and strain dynamics in microbiome communities.



Figure 4:  Kaa-mer metapangenomes reveal species and strain dynamics in time series gut microbiome
metagenomes after antibiotic exposure. A) Antibiotic courses and corresponding gut microbiome pro�les for a single
individual with Crohn’s disease. Fractional abundances are colored by species, with only the six species that accounted
for greater than 2% of all metagenome reads displayed. B) Upset plot of amino acid k-mers (k = 10) present in the kaa-
mer metapangenomes, the de novo metapangenomes, and the reference pangenome. Intersections are colored by
species. C) Bar plots indicating the average fraction of reads used to build the kaa-mer metapangenome that mapped
�rst against the reference pangenome, then against the de novo metapangenome, or were unmapped. More reads
mapped in amino acid space than in nucleotide space. Only the fraction of reads that mapped to the reference
pangenome and the fraction reads that were unmapped are labelled. D) Bar plots of the fraction of kaa-mer
metapangenome sequences that were anchored to a given strain using the sourmash gather algorithm against the
GTDB rs202 database (k = 51). Colors represent strains, which are labelled by their NCBI strain name. Missing fractions
depicted as blank space between the bar and one represent novel k-mers not in the database. Only genomes that
accounted for greater than 2% of the weighted fractional abundance and that were annotated as the same species are
colored. Weeks in which the species was low-abundance are excluded. Starting at at week 13, sequences from
previously unobserved strains were detected within each metapangenome. This timing coincides with metronidazole
administration.

Discussion
We present a method to perform assembly-free metapangenomics that is minimally reliant on
reference databases. We show that pangenome metrics like core, cloud, and shell pangenome
fractions can be accurately estimated with amino acid k-mers (k = 10). We then demonstrate accurate
prediction of open reading frames in highly accurate short sequencing reads by comparing amino acid
k-mers in all translation frames against a database of k-mers from bacterial and archaeal genomes in
GTDB (rs202). Combining these tools enables pangenome estimation directly from quality controlled
short sequencing reads. In the context of metagenomes, these approaches enable metapangenome
estimation without the need to de novo assemble and bin sequences, eliminating common sources of
lost sequencing variation [21]. These techniques also reduce the dependence of metapangenomics on
complete or comprehensive reference databases, which can be important for understudied
environments.

While we leverage open reading frame prediction from short reads and kaa-mer pangenomes in the
context of metapangenomes, these approaches have additional applications. Open reading frame
prediction with orpheum can be executed on microbial Illumina short read data sets. This may
improve functional recall from metagenome short reads from organisms without reference genomes
and from communities that have low assembly rates [39], or from metatranscriptomes, however
these applications must be validated. Similarly, kaa-mer pangenomes built from sketches may o�er
bene�ts over other pangenome construction methods, many of which are predominately tied to exact
matching of k-mers between genomes. Exact matching of k-mers between genomes enables
additional genomes to be added to the pangenome without having to re-cluster gene sequences.
Exact matching also allows direct comparisons to distantly related organisms, which creates a uni�ed
framework for genome comparisons even when organisms are distantly related. While we
predominantly explored kaa-mers of length 10 in this paper, k-mers from other degenerate alphabets
like Dayho� or hydrophobic-polar encodings may allow for accurate comparisons at greater
evolutionary distances [17,25]. When pangenomes are built from FracMinHashes as performed here,
the scaled down sampling parameter may also enable faster pangenome size estimation even for very
large collections of genomes and could be potentially used a quality control metric for annotated
genomes. While developed for the metapangenomics space, this study demonstrates that kaa-mer
pangenomes also accurately estimate pangenomes built from isolate genomes. Since building kaa-mer
sketches and searching for exact matches of kaa-mers between genomes is fast, this provides an
alternative approach for building pangenomes. Lastly, our results suggest that the number of kaa-
mers in a genome strongly correlates with the number of genes; we observed that while the number
of genes per genome is increased for genomes with the RefSeq exclusion criteria of “many
frameshifted proteins”, there is no commensurate increase in the number of kaa-mers observed. This



suggests that the number of kaa-mers in a genome could be used to predict the expected range of
predicted genes, and could be used as a quality diagnostic criteria.

We posit that the combination of these approaches is potentially most useful in the context of
analyzing metagenome assembly graphs. Assembly graphs like compact de Bruijn graphs (cDBG)
capture all sequences in a metagenome, including sequences with high strain variation or low
coverage, which may not be captured by other analysis methods. A targeted query of an assembly
graph, for example with a metagenome-assembled genome bin, can recover all sequencing reads in a
metagenome that originate from all genomes of the same species [21]. Often, reads may be longer
than unitigs (nodes) in the cDBG in regions of high variation making read retrieval desirable. While
recovering these reads and assigning their taxonomic identity through graph queries is useful, many
of the recovered reads cannot be assembled due to proli�c sequencing variation attributable to strain
diversity in the original microbial community. Yet, the sequences represented by these un-
assembleable reads often encode functional potential, some of which may be key to a
microorganisms functioning within its ecosystem [20,40]. The approaches presented in this paper
enable these sequences to be represented in metapangenome estimation. Indeed, as demonstrated
by the number of bins generated per species at each time point, many species were observed in a
sample for which no bin was produced, often because the species was present at low abundance
(Figure S4). Kaa-mer metapangenomes rescue these sequences and include them in the analysis.

Interestingly, in some samples, de novo metagenome analysis produced multiple MAGs (Figure S4).
While not explored here, it may be possible to estimate the number of strains present in a sample
using kaa-mer abundances. FracMinHash sketches optionally retain abundance information, so it is
possible that this information could be retrieved directly from these sketches.

This method is not without shortcomings, the largest of which is the current lack of integration of kaa-
mers with functional annotations. We see three avenues by which this could be ameliorated. First, the
underlying cDBG used to produce assembly graph query neighborhoods could be annotated, and
these annotations could be paired with kaa-mers. The technology to do this exists [41,42], however
this approach is the least scalable option. Second, using the sequences included in the orpheum
species databases, species-level protein databases that include functional annotations could be built
and searched using sourmash gather. While rapid, this approach is undesirable given its reliance on
existing annotations for genes within a given species. Lastly, a database such as the NCBI nr database
could be made searchable in a similar capacity, increasing the breadth of possible matches. This may
require new algorithm development to maintain scalability [43].

While cDBGs are often common intermediary data structures in bioinformatics pipelines (e.g.,
metagenome assembly), the organization of cDBGs is still under explored. Sequences from a genome
or from closely related genomes often co-locate in neighborhoods of the cDBG [20,21], but regions of
high sequence conservation and horizontally transferred genes create bridges between otherwise
distant neighborhoods in the graph [20]. Even still, species-level neighborhoods are well conserved
and can be extracted [21,44]. As we observed in strain-level plots of query neighborhoods wherein a
fraction of the graph fell in the “other category” and belonged to low-abundance strains of the same
species or organisms of other closely-related species (Figure 4 D), it is unclear the extent to which
assembly graph organization breaks down in real metagenomes. Proli�c horizontal gene transfer
could account for shared sequencing content, either by collapsing neighborhoods in the graph or by
increasing the fraction of shared sequences between community members. Deeply sequenced paired
long and short reads from the same community could help resolve these questions.

While we observe strain dynamics, the ecological reason for those signals cannot be determined from
short read sequences alone; the patterns we observe could be the result of strain turn over, the
presence of multiple strains, horizontal gene transfer between strains, or some combination of all of
these in�uences. Again, long read sequencing, or sequencing from isolate genomes, could resolve



these questions, particularly as long read lineage-resolved methods become mainstream [45]. In
principle, the methods presented here should extend directly to long read sequences, however this
remains a point of future research.

Methods
All code is available at github.com/dib-lab/2021-panmers (results section 1; DOI:
10.5281/zenodo.6761161), github.com/dib-lab/2021-orpheum-sim (results section 2; DOI:
10.5281/zenodo.6761169), and https://github.com/dib-lab/2021-metapangenome-example (results
section 3; DOI: 10.5281/zenodo.6761180).

Selection of benchmarking species for pangenome analysis

We selected a species representative for each of the 23 phyla in GTDB rs202 [26]. To select
representative species, we �rst removed species with fewer than 20 genomes and greater than 1000
genomes. While this approach scales beyond 1000 genomes, we elected to benchmark smaller sets to
iterate over the potential parameter space more quickly. Of species remaining after �ltering, we
selected the species within each phyla that had the largest number of genomes. We downloaded
these genomes from GenBank. Species names are recorded in Figure S1.

Calculating the gene-based pangenome with roary

To calculate the gene-based pangenome, we �rst annotated each genome using prokka [46]. We then
used the resulting GFF annotations �les to calculate the pangenome with roary using default settings
[47].

Calculating the k-mer based pangenome with sourmash

To calculate k-mer based pangenomes, we used sourmash sketch  to generate signatures from the
prokka-predicted amino acid sequences ( .faa  �les) [48]. We used the protein alphabet (k = 7, 8, 9,
10, 11), dayho� alphabet (k = 13, 15, 17), and the hydrophobic-polar alphabet (k = 27, 31). All
signatures were calculated with a scaled value of 100. The scaled parameter controls the fraction of
the total k-mers represented by the sketch; a scaled value of 100 indicates that 1/100th of the distinct
k-mers in a genome were included in each sketch. We converted signatures from json format into a
genome x hash presence-absence matrix.

Correlating gene-based and k-mer based pangenomes

Using the presence-absence matrices for the gene-based and k-mer-based pangenomes, we
correlated total genes/k-mers observed per genome and total unique genes/k-mers observed per
genome for each species. We used the rowSums()  function in R to determine the number of
genes/unique genes per matrix, then used the lm()  function with default parameters to correlate
the values. We also used the Mantel test to determine whether genomes that were most similar in the
gene presence-absence matrix were also most similar in the k-mer presence-absence matrix [27]. We
used the mantel()  function in the R vegan package to perform this test [49]. We used distance
matrices calculated with the dist()  function using the parameter method = "binary"  as input to
the mantel test.

To estimate the containment between the sequences in core genomes as estimated by roary and as
estimated by kaa-mers, we limited the core genome to sequences present in all genomes. We then



generated FracMinHash protein sketches using sourmash sketch  (k=10, scaled=100) for roary core
sequences and kaa-mer core sequences and estimated containment using sourmash compare  [48].

Generating standard pangenome metrics with pagoo

The pagoo R package provides functions to analyze bacterial pangenomes [50]. We used this package
to generate standard pangenome metrics and visualizations. These metrics are based on the
presence-absence matrices generated above and include calculation of the core, shell, and cloud
genome sizes and estimation of the alpha value in Heaps law for estimation of pangenome openness.

Augmenting benchmarking species set to include genomes not in
GTDB for open reading frame prediction

We next generated a benchmarking data set for open reading frame prediction. We selected a
genome from each of the 23 species evaluated above, choosing the GTDB rs202 representative
genome for each species. Genome accessions are recorded in Table S2. Given that open reading
frame prediction relies on a database, and we used k-mers in GTDB rs202 to generate this database,
we also wanted to select genomes that were not in GTDB to evaluate this method. We determined the
bacterial and archaeal genomes that were added to RefSeq after the construction of GTDB rs202 (April
2021-November 2021). From this set, we selected a representative genome from each of the distinct
NCBI phyla represented among these genomes, 20 in total. Genome accessions are recorded in Table
S3. We then ran GTDB-tk on these genomes to predict the GTDB taxonomy of each [51].

Simulating coding domain sequence and non coding domain sequence
reads with polyester

We next created a labelled data set of simulated reads that were generated from either coding
domain sequences (CDS) or non-coding regions within each genome. We annotated the genomes with
bakta to produce CDS ranges [52], and used polyester to simulate reads from CDS or non-coding
regions [53]. We used the default short read error pro�le within polyester.

Determining short read open reading frames with orpheum

We used the orpheum tool to predict open reading frames from simulated short reads [25]. Orpheum
was developed to predict open reading frames in short RNA-seq reads from Eukaryotic organisms
without a reference genome or transcriptome sequence [25]. Orpheum performs six-frame
translation on nucleotide sequencing reads, calculates k-mers in an amino acid encoding at the
designated k-mer length, and then estimates the containment of k-mers in a reference database in
each translated frame. It then selects all open reading frames based on a containment threshold, and
returns those reads as translated amino acid sequences. Open reading frames are excluded if they
contain stop codons, low complexity sequences, or if the read is too short to perform translation.
Reads are designated as non-coding if they don’t reach the containment threshold and are not
excluded for other reasons. We constructed a database from all genomes in GTDB rs202. We either
downloaded predicted open reading frames from GenBank, or generated them using prodigal [54],
and translated them into protein sequences using transeq [55]. We then used to build a nodegraph
using a kaa-mer size of 10.

Kaa-mer metapangenome analysis of iHMP metagenomes



We used sourmash, spacegraphcats, and orpheum to perform kaa-mer metapangenome analysis of
12 iHMP time series gut microbiomes captured by short read shotgun metagenomes [56]. We
downloaded samples HSM6XRQB, HSM6XRQI, HSM6XRQK, HSM6XRQM, HSM6XRQO, HSM67VF9,
HSM67VFD, HSM67VFJ, HSM7CYY7, HSM7CYYD, HSM7CYY9, HSM7CYYB from ibdmdb.org. We adapter
and quality trimmed each sample with fastp (parameters --detect_adapter_for_pe , --
qualified_quality_phred 4 , --length_required 31 , and --correction ) [57], removed
human host sequencing reads with bbduk (parameters k=31 , reference �le
https://drive.google.com/�le/d/0B3llHR93L14wd0pSSnFULUlhcUk/edit?usp=sharing), and k-mer
trimmed reads using khmer trim-low-abund.py  (parameters -C 3 , -Z 18 , -V ) [58]. We then
used sourmash gather  to infer the taxonomic pro�le of each sample, using the GTDB rs202
database (k = 31, https://osf.io/w4bcm/) [56]. We summarized the results to species-level using the
GTDB taxonomy. We retained species with a cumulative sum of at least 2% (sum of 
f_unique_to_query ) across metagenome reads as query genomes. We downloaded each genome

from GenBank (Table 2) and performed spacegraphcats assembly graph queries with each
(parameters ksize: 31 , radius: 1 , paired_reads: true ) [21]. Using the returned reads, we
predicted open reading frames using orpheum translate  (parameters --jaccard-threshold 
0.39 , --alphabet protein , --peptide-ksize 10 ) and using species-level GTDB databases.
We sketched each set of translated reads using sourmash sketch  (parameters protein , -p 
k=10,scaled=100,protein ) [48], converted each sketch to a csv �le, and then combined csv �les
for a single query species across all metagenomes. This long format csv was used as input for the R
pangenome package pagoo, using the pagoo()  function [50]. We used pagoo methods 
pg$gg_binmap() , pg$summary_stats() , and pg$pg_power_law_fit()  to visualize the

pangenome, calculate the size of the core, shell, and cloud, and estimate alpha.

Table 2:  Query genome GTDB species names and GenBank accessions.

species accession

Parabacteroides distasonis GCA_000162535.1

Enterocloster bolteae GCF_003433765.1

Bacteroides fragilis GCF_003458955.1

Parabacteroides merdae GCF_003475305.1

Bacteroides uniformis GCF_009020325.1

Phocaeicola vulgatus GCF_009025805.1

Comparing kaa-mer, de novo, and reference (meta)pangenomes

We compared the kaa-mer metapangenomes against other (meta)pangenomes. We �rst constructed a
reference pangenome for each query species as detailed in the methods section, “Calculated the
gene-based pangenome with roary.” We used all genomes in the GTDB rs202 database for a given
species (Table 2). We then constructed de novo metapangenomes for each species. Using quality
controlled reads from each sample, we assembled each metagenome separately using megahit with
default parameters [59]. We binned the resultant assemblies using metabat2 with parameter -m 
1500  [60]. We assigned GTDB species to each bin using sourmash gather  (DNA, k = 31, scaled =
2000) against the GTDB rs202 database, selecting the species of the best match [19]. We
decontaminated each bin with charcoal using default parameters [61]. We annotated each bin using
prokka [46]. To compare the sequence content of the (meta)pangenomes, we sketched the protein
sequences from the de novo and reference (meta)pangenomes using sourmash sketch  (protein, k =
10, scaled = 100). We intersected the hashes in these sketches to assess shared sequencing content,
and visualized it using the R complexUpset package [62].



To further compare the sequence content of the kaa-mer metapangenomes to the de novo and
reference (meta)pangenomes, we mapped the reads used to build the kaa-mer metapangenomes
iteratively against the (meta)pangenomes. We �rst mapped the reads against the reference
pangenome using bwa mem  with default parameters [63]. We used samtools stat  to determine
read mapping statistics, and samtools view  and fastq  to extract the unmapped reads [64]. We
then mapped the unmapped reads against the de novo metapangenome. To prepare the de novo
metapangenome for mapping, we clustered nucleotide sequences at 95% using cd-hit-est [65]. We
then mapped the unmapped reads using bwa mem  with default parameters. We extracted unmapped
reads using the same procedure as above. To determine whether more reads mapped in amino acid
space, we translated the reference and de novo (meta)pangenomes into protein sequences using
transeq [55], and then repeated the same iterative mapping procedure using paladin align  [34]. To
test whether the fraction of mapped reads increased between the two mapping protocols, we used
the R function t.test()  using parameter paired = TRUE .
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Appendix/Supplementary information

Figure S1:  GTDB species used in this paper. These species were used to benchmark pangenome construction with
reduced alphabet k-mers and open reading frame prediction from short sequencing reads. The trees are the default
GTDB rs202 trees, with tips representing species not used in this paper removed.

Figure S2:  K-mer size and encoding do not impact pangenome estimation with k-mers. Box plots representing the
distribution of R2 values for linear models (Total, Unique) or statistic values for mantel tests (Mantel) calculated for each
pangenome. All pangenomes are included, whether they contain genomes with the RefSeq exclusion criteria “many
frameshifted proteins” or not. See �gure legend for Figure 2 for a description of Total, Unique, and Mantel.



Figure S3:  Percent of reads encoding coding domain sequences (CDS) that were predicted to be coding. There is
no change between the percent of reads predicted to be derived from coding domain sequences when a species-level
database is used versus when all of GTDB is used to predict open reading frames The slight increase observable for
some species is a result of di�erent thresholds, where we used 0.39 for the species database and 0.5 for the GTDB
rs202 database.

Table S1:  Metapangenome estimates for each species. n designates the number of metagenomes used to estimate the
total, core, shell, cloud, and alpha values. Unlike isolate genomes, metagenomes may contain a fraction of an organism’s
genome if the metagenome was not sequenced deeply or if an organism was rare. To calculate the core, shell, and cloud
fractions and to estimate the openness of the metapangenome, we removed samples with fewer than 10,000 kaa-mers.

species n total core shell cloud alpha

Bacteroides fragilis 7 24819 56.3% 11.3% 32.4% 0.76

Bacteroides uniformis 9 32197 38.0% 22.3% 39.7% 0.73

Enterocloster bolteae 4 23620 55.8% 18.3% 25.9% 0.66

Parabacteroides distasonis 7 25789 42.4% 30.9% 26.8% 0.74

Parabacteroides merdae 6 19985 63.2% 9.6% 27.1% 0.82

Phocaeicola vulgatus 11 41005 30.3% 20.4% 49.2% 0.65



Figure S4:  kaa-mer metapangenomes for six species. Each species contains a four-panel �gure. The �rst panel is a
binmap plot. Dark colors represent k-mers that are present in each sample. Blue shades represent time points when the
sampled individual was not on antibiotics, while green shades represent time points when the individual was on
antibiotics. The second panel represents an estimated number of base pairs in the metagenome detected to originate
from that species. The third panel represents an estimated fraction of the metagenome assigned to that species. The
fourth panel represents the number of bins produced for that species from that sample using a de novo metagenome
assembly and binning approach. The two values represented in the second and third panels and the species
assignations used to infer the value represented in the fourth panel were inferred using the sourmash gather algorithm
against the GTDB rs202 database. A) Species for which presence-absence �uctuated over the time series. B) Species for
which strain presence-absence �uctuated over the time series.

Table S2:  GTDB genomes used to benchmark orpheum accuracy.
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5.1

d__
Bac
teri
a

p__Acid
obacter
iota

c__Holop
hagae

o__Holo
phagale
s

f__Holoph
agaceae

g__Geoth
rix

s__Geothrix
sp903857495

90
49
90

uncultured
Holophagaceae bacterium

GCF_
0067
4220
5.1

d__
Bac
teri
a

p__Firm
icutes c__Bacilli

o__Stap
hylococ
cales

f__Staphyl
ococcacea
e

g__Staph
ylococcu
s

s__Staphylococ
cus epidermidis

12
82

Staphylococcus
epidermidis

GCF_
0020
0644
5.1

d__
Bac
teri
a

p__Firm
icutes_
A

c__Clostri
dia

o__Clos
tridiales

f__Clostrid
iaceae

g__Clostri
dium

s__Clostridium
beijerinckii

15
20 Clostridium beijerinckii

GCA_
9038
6171
5.1

d__
Bac
teri
a

p__Pate
scibacte
ria

c__Paceib
acteria

o__Mor
anbacte
rales

f__GWC2-
37-73

g__CAIP
MZ01

s__CAIPMZ01
sp903861715

77
13
3

uncultured bacterium

GCF_
0000
0802
5.1

d__
Bac
teri
a

p__Prot
eobacte
ria

c__Alpha
proteoba
cteria

o__Rick
ettsiale
s

f__Anaplas
mataceae

g__Wolba
chia

s__Wolbachia
pipientis

16
31
64

Wolbachia endosymbiont
of Drosophila
melanogaster

GCF_
0008
3088
5.1

d__
Bac
teri
a

p__Chlo
ro�exot
a

c__Dehal
ococcoidi
a

o__Deh
alococc
oidales

f__Dehalo
coccoidac
eae

g__Dehal
ococcoid
es

s__Dehalococco
ides mccartyi_B

14
32
06
1

Dehalococcoides mccartyi
CG5

GCF_
0002
9923
5.1

d__
Bac
teri
a

p__Nitr
ospirot
a_A

c__Lepto
spirillia

o__Lept
ospirilla
les

f__Leptosp
irillaceae

g__Lepto
spirillum
_A

s__Leptospirillu
m_A rubarum

10
48
26
0

Leptospirillum ferriphilum
ML-04

GCA_
0006
3549
5.1

d__
Bac
teri
a

p__Cya
nobact
eria

c__Cyano
bacteriia

o__PCC-
6307

f__Cyanobi
aceae

g__Prochl
orococcu
s_A

s__Prochloroco
ccus_A
sp000635495

14
71
47
2

Prochlorococcus sp.
scB243_495K23

GCA_
9038
5249
5.1

d__
Bac
teri
a

p__Des
ulfobac
terota_
F

c__Desulf
uromona
dia

o__Geo
bactera
les

f__Pseudo
pelobacte
raceae

g__Pseud
opelobac
ter

s__Pseudopelo
bacter
sp903852495

21
40
33

uncultured
Geobacteraceae
bacterium

GCA_
9038
6926
5.1

d__
Bac
teri
a

p__Des
ulfobac
terota

c__Desulf
obulbia

o__Des
ulfobul
bales

f__Desulfu
rivibrionac
eae

g__UBA2
262

s__UBA2262
sp903869265

34
03
4

uncultured delta
proteobacterium

GCF_
0000
2022
5.1

d__
Bac
teri
a

p__Verr
ucomicr
obiota

c__Verru
comicrob
iae

o__Verr
ucomicr
obiales

f__Akkerm
ansiaceae

g__Akker
mansia

s__Akkermansia
muciniphila

34
97
41

Akkermansia muciniphila
ATCC BAA-835
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ssio

n

sup
erki
ngd
om

phylu
m class order family genus species

N
CB
I
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d
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GCF_
9004
7829
5.1

d__
Bac
teri
a

p__Cam
pylobac
terota

c__Camp
ylobacter
ia

o__Cam
pylobac
terales

f__Helicob
acteracea
e

g__Helico
bacter

s__Helicobacter
pylori

10
26
18

Helicobacter pylori NCTC
11637 = CCUG 17874 =
ATCC 43504

GCF_
0001
5420
5.1

d__
Bac
teri
a

p__Bact
eroidot
a

c__Bacter
oidia

o__Bact
eroidal
es

f__Bactero
idaceae

g__Bacte
roides

s__Bacteroides
uniformis

41
14
79

Bacteroides uniformis
ATCC 8492

GCF_
0001
9655
5.1

d__
Bac
teri
a

p__Acti
nobact
eriota

c__Actino
mycetia

o__Acti
nomyce
tales

f__Bi�dob
acteriacea
e

g__Bi�do
bacteriu
m

s__Bi�dobacteri
um longum

56
50
42

Bi�dobacterium longum
subsp. longum JCM 1217

GCF_
0000
1228
5.1

d__
Arc
hae
a

p__Ther
moprot
eota

c__Therm
oproteia

o__Sulf
olobale
s

f__Sulfolo
baceae

g__Sulfol
obus

s__Sulfolobus
acidocaldarius

33
07
79

Sulfolobus acidocaldarius
DSM 639

GCF_
0009
7020
5.1

d__
Arc
hae
a

p__Halo
bacteri
ota

c__Metha
nosarcini
a

o__Met
hanosa
rcinales

f__Methan
osarcinac
eae

g__Metha
nosarcin
a

s__Methanosar
cina mazei

21
35
85

Methanosarcina mazei S-6

GCA_
9003
1469
5.1

d__
Arc
hae
a

p__Met
hanoba
cteriota

c__Metha
nobacter
ia

o__Met
hanoba
cteriale
s

f__Methan
obacteriac
eae

g__Metha
nobrevib
acter_A

s__Methanobre
vibacter_A
sp900314695

25
31
61

uncultured
Methanobrevibacter sp.

GCF_
9000
8351
5.1

d__
Arc
hae
a

p__Ther
moplas
matota

c__Therm
oplasmat
a

o__Ther
moplas
matales

f__Thermo
plasmatac
eae

g__Cunic
uliplasm
a

s__Cuniculiplas
ma divulgatum

16
73
42
8

Cuniculiplasma
divulgatum

Table S3:  RefSeq genomes not in the GTDB rs202 database used to benchmark orpheum accuracy.

accession NCBI taxid NCBI organism name

GCF_003428625.2 2303751 Acidipila sp. 4G-K13

GCF_001700755.2 1160719 Cutibacterium granulosum DSM 20700

GCF_001884725.2 336810 Candidatus Sulcia muelleri

GCF_015356815.2 225148 Candidatus Rhabdochlamydia porcellionis

GCF_019599295.1 2866714 Oscillochloris sp. ZM17-4

GCF_020520145.1 936456 Desulfurispirillum indicum

GCF_019175305.1 2286 Saccharolobus shibatae

GCF_018282115.1 2732530 Synechocystis sp. PCC 7338

GCF_018863415.1 2774531 Deinococcus sp. SYSU M49105

GCF_013456555.2 1710539 Natrinema sp. YPL30

GCF_000167435.2 1314 Streptococcus pyogenes



accession NCBI taxid NCBI organism name

GCF_018205295.1 859 Fusobacterium necrophorum

GCF_019173545.1 1455061 Candidatus Magnetobacterium casensis

GCF_018398935.1 1123043 Telmatocola sphagniphila

GCF_000145825.2 629264 Pseudomonas syringae Cit 7

GCF_002442595.2 139 Borreliella burgdorferi

GCF_009156025.2 28903 Mycoplasmopsis bovis

GCF_019688735.1 2867247 Thermosulfurimonas sp. F29

GCF_018588215.1 1755816 Thermosipho sp. 1244

GCF_018336995.1 239935 Akkermansia muciniphila

Practical considerations for building kaa-mer metapangenomes

Open reading frame prediction with orpheum

The RAM used to run orpheum is dictated by the database size, as the database is loaded into to
memory while it is running. The GTDB rs202 nodegraph was 94 GB in size, and the RAM required to
run orpheum never exceed 97GB, which makes database distribution and orpheum execution
available on high performance compute clusters and other remote computers. Alternatively, species
level databases were ~5 Mb in size, reducing the RAM and CPU time needed to run orpheum.

We demonstrated that orpheum is better able to predict open reading frames in genomes that have
species-level representatives in the GTDB database. To asses whether this criteria is satis�ed by a
query genome without performing genome assembly, we recommend sourmash gather [19].
Sourmash gather will estimate the fraction of sequencing reads in a genome or metagenome that
match to genomes in GTDB by comparing long nucleotide k-mers in the query against those in the
database [19]. Alternatively, the tool SingleM could be used to perform this task
(https://github.com/wwood/singlem). SingleM estimates the taxonomic composition of sequencing
reads by identifying fragments of single copy marker genes in short reads and comparing them
against a database of taxonomically labelled sequences.

These strategies may also be useful to predetermine the set of species-level databases to use for ORF
prediction.

Kaa-mer pangenome construction

One consideration is for kaa-mer sketch creation is the scaled value. The scaled parameter controls
the fraction on kaa-mers included in each sketch. We have found that a scaled value of 100 works well
for comparing proteomes [17]. For a subset of pangenomes benchmarked in results section, “K-mer
methods accurately predict open reading frames in short sequencing reads”, we tested scaled = 1 and
scaled = 100 (n = 8; s__Akkermansia muciniphila, s__Chlamydia trachomatis, s__Faecalibacterium
prausnitzii_D s__Gemmiger formicilis, s__Geothrix sp903857495, s__Methanobrevibacter_A-
sp900314695, s__Thermus scotoductus, s__UBA2262 sp903869265). We correlated the number of kaa-
mers and genes per pangenome, the number of unique kaa-mers and genes per pangenome, and the
similarity between genomes using kaa-mers or genes with sketches generated using a scaled of 1 or a
scaled of 100. We then performed a second order correlation to determine if both scaled values
produced the same results. All values were strongly signi�cantly correlated with an R2 > 0.99 (p <
0.001), indicating that scaled 100 sketches captured the same patterns as scaled 1 sketches. While we



have not experimented with the upper bound of the scaled value that will still produce accurate
results, using a scaled of 100 substantially decreased compute times.


