
Sourmash Branchwater Enables Lightweight
Petabyte-Scale Sequence Search

This manuscript (permalink) was automatically generated from dib-lab/2022-paper-branchwater-software@5542490 on
November 10, 2022.

Authors

Luiz Irber  
 0000-0003-4371-9659 ·  luizirber ·  luizirber 

Graduate Group in Computer Science, UC Davis; Department of Population Health and Reproduction, UC Davis ·
Funded by Grant GBMF4551 from the Gordon and Betty Moore Foundation; Grant R01HG007513 from the NIH NHGRI

N. Tessa Pierce-Ward  
 0000-0002-2942-5331 ·  bluegenes ·  saltyscientist 

Department of Population Health and Reproduction, UC Davis · Funded by Grant 1711984 from the NSF; Grant
GBMF4551 from the Gordon and Betty Moore Foundation; Grant 2018911 from the NSF

C. Titus Brown  
 0000-0001-6001-2677 ·  ctb 

Department of Population Health and Reproduction, UC Davis · Funded by Grant GBMF4551 from the Gordon and
Betty Moore Foundation; Grant R01HG007513 from the NIH NHGRI; Grant 2018911 from the NSF; Grant R03OD030596
from the NIH Common Fund

✉ — Correspondence possible via GitHub Issues

https://dib-lab.github.io/2022-paper-branchwater-software/v/55424904de3d830e971dbd96ed2a2b8c31ec102d/
https://github.com/dib-lab/2022-paper-branchwater-software/tree/55424904de3d830e971dbd96ed2a2b8c31ec102d
https://orcid.org/0000-0003-4371-9659
https://github.com/luizirber
https://twitter.com/luizirber
https://orcid.org/0000-0002-2942-5331
https://github.com/bluegenes
https://twitter.com/saltyscientist
https://orcid.org/0000-0001-6001-2677
https://github.com/ctb
https://github.com/dib-lab/2022-paper-branchwater-software/issues


Abstract

We introduce branchwater, a �exible and fast petabase-scale search for the 767,000 public
metagenomes presently in the NCBI Sequence Read Archive. Our search is based on the FracMinHash
k-mer sketching technique and can search all public metagenomes with 1000 query genomes in
approximately 36 hours using 50 GB of RAM and 32 threads. Branchwater is a Rust-based
multithreading front-end built on top of the sourmash library. We provide biological use cases,
examine performance, and discuss design and performance considerations.



Introduction

Substantial growth in publicly available nucleotide sequencing data (DNA and RNA) has occurred over
the last decade, driven by decreases in sequencing costs. In particular the Sequence Read Archive now
has over 9 million entries containing 12 PB of data [1]. Shotgun metagenomes, generated by random
sequencing of mixtures of microbes sampled from a microbiome are a particularly interesting
resource stored in the SRA.

Shotgun metagenome data sets are often large (100s of MBs to 10s of GB) and can be highly complex,
with environmental samples containing genomic data that can be attributed to thousands or more
species. In the past decade, hundreds of thousands of new bacterial and archaeal genomes have been
isolated from public metagenomes, and several entirely new branches of life have been discovered
purely through analysis of public data [2,3,4].

Beyond their initial use, these data sets form an incredibly rich resource for contextualizing novel
sequencing data and for synthesis research on a myriad of large-scale genomic questions ranging
from basic evolutionary processes to disease associations and pathogenicity tracking (Table 1).
However, comprehensive discovery of relevant data sets is challenging. Metadata for these data sets
is typically geared towards the submitting researcher’s study questions and major �ndings, and
moreover cannot possibly describe the full contents of the data. Furthermore, metadata provided at
the time of submission can be incomplete or inconsistent, rendering systematic data set discovery
intractable.

Content-based search is a promising alternative strategy for �nding data sets in archives. By searching
with genomic content of interest, content-based search of metagenomes can recover datasets
containing relevant species or genes of interest regardless of their associated metadata. However,
search of unassembled metagenomic sequence is critical to ensure unbiased and comprehensive
recovery of relevant datasets. Assembly techniques are designed to produce consensus reference
sequences useful for consistent comparisons across genotypes, often collapsing sequence variation in
the process [5,6]. In addition, reassembly and reanalysis of existing data using di�erent parameters or
newer methods often yields di�erent results. Content-based search of unassembled metagenomes
can bypass these issues and facilitate consistent downstream analysis across data sets that may have
been initially generated to answer a range of disparate biological questions, and been �rst analyzed
over a range of years and with myriad techniques.

A number of approaches have been developed to enable content-based search of single-organism
genomic and RNAseq data. Methods that enable rapid, large-scale search across hundreds of
thousands of data sets typically leverage biological sketching techniques and probabilistic data
structures to reduce the e�ective search space [7,8,9]. However, these approaches do not readily
translate to datasets with unknown levels of sequence diversity, the de�ning feature of metagenomic
datasets.

Recently Serratus used extensive search across public datasets to recover 880,000 RNA-dependent
RNA polymerase-containing sequences, and discovered over 131,000 novel RNA viruses [10]. This
search was comprehensive but also time-consuming and costly, and still out of reach for unfunded
exploratory research. Other approaches such as searchsra.org [11] and metagraph [12] are promising
but are not yet capable of searching all public data.

Here, we introduce branchwater, a petabase-scale querying system that uses containment searches
based on FracMinHash sketching to search unassembled data sets. Branchwater can search all public
metagenome data sets in the SRA in 24-36 hours on commodity hardware with 1-1000 query



genomes. Branchwater uses the Rust library underlying the sourmash implementation of
FracMinHash to execute massively parallel searches of a presketched digest of the SRA [13,14].

The availability of relatively lightweight content-based search of SRA metagenomes helps address
many of the biological use cases in Table 1 (see 3rd column). Some of these use cases have already
been explored with branchwater: Viehweger et al. (2021) [15] used branchwater to discover a
metagenomic sample containing Klebsiella pneumonia that was subsequently included in an outbreak
analysis, and Lumian et al. (2022) [16] conducted a biogeographical study on �ve newly generated
cyanobacterial metagenome-assembled genomes from Antarctic samples.

Table 1:  Biological use cases for petabase scale sequence search of metagenomes

Use case Description Enabled by branchwater

Biogeography of genomes
Describe and characterize
biogeographical distribution of
species; identify sampling locations

Yes

Outbreak tracking Trace pathogen spread via public data Yes, for genomes > 10kb

Pangenome expansion

Expand and explore composition of
strains, species and genus level
pangenomes (including SAGs and
MAGs)

Yes

SRA metadata reannotation Content-based validation and
reannotation of SRA metagenomes Yes

Private database access and search Provide privacy-enabled search of
large, access-restricted databases Yes

Post-processing and cleaning MAGs
Evaluating contig-level presence and
abundance across multiple
metagenomes

Yes, for contigs > 10kb

Exploring breadth of plasmids etc.
Evaluating range and prevalence of
laterally transferred genomic
elements

Yes, for plasmids > 10kb

Exploring host range of species for
regulatory evaluation Yes, for genomes > 10kb

Search for small viruses No

Searching for speci�c functional
genes No

Detecting novel classes and orders No

Background



FracMinHash and sourmash

FracMinHash is a bottom-sketch version of ModHash that supports accurate estimation of overlap
and containment between two sequencing sets [14]. In brief, FracMinHash is a lossy compression
approach that represents data sets using a “fractional” sketch containing  of the original k-mers.
FracMinHash sketches support estimation of overlap, bidirectional containment, and Jaccard similarity
between two data sets. Unlike other common sketching techniques such as MinHash [17] and
HyperLogLog [18], FracMinHash supports these operations between two data sets of di�erent sizes,
which is important for metagenomic search; and unlike mash screen and CMash, FracMinHash does
not require the original data sets [19,20]. In exchange, FracMinHash sketches are essentially
unbounded in size, since they can grow to include up to  elements for a hash space  in size.

The open-source sourmash software provides a mature and well-documented command-line
interface to FracMinHash sketching, along with Python and Rust APIs for saving, loading and
comparing FracMinHash sketches [13,21]. The Python layer provides a larger number of user
experience conveniences on top of the performant Rust layer. However, despite the thread safety of
the underlying Rust code, the CLI and Python library still operate in single-threaded mode, which
limits the utility of sourmash for very large scale operations. Refactoring the sourmash CLI and Python
libraries to take advantage of thread safety is a substantial and ongoing e�ort; for petabase scale
search, we chose to develop a dedicated CLI in Rust in the interim.

There are several features of FracMinHash and sourmash that limit their utility for speci�c use cases.
In particular, the default  parameter used in sourmash does not work well for comparing or
detecting genomes smaller than 10kb in size. Nor can highly divergent genomes be found; based on k-
mer containment to ANI conversion [22], we �nd that sourmash defaults work well for �nding
matches to genomes within about 90% ANI of the query, but not necessarily further. Finally,
FracMinHash was developed for shotgun data sets and di�erent parameters would be required for
other types of sequencing data such as amplicon data sets. Some of these limitations are intrinsic to
FracMinHash, and others may be overcome in the future by parameter tuning and further research.

Petabase scale search represents a speci�c technical challenge to
sourmash

The primary design focus for the sourmash CLI has been on searching and comparing many microbial
genome-sized sketches, where for typical parameters there are between 1000 and 10,000 hashes in
each sketch. The software provides a variety of in-memory and on-disk data structures for organizing
sketches in this size range and can search hundreds of thousands of genome sketches with a single
query in minutes in a single thread on an SSD laptop; more complex algorithms such as the min-set-
cov approach described in [14] can take a few hours but are still acceptably performant on most real-
world data.

Branchwater faces very di�erent challenges in searching large collections of metagenomes. Many of
these data sets are individually extremely large, and hence slow to read from disk and expensive to
store in memory. Where multiple queries are used to search each metagenome, quadratic search
costs are also be incurred.

One solution we explored was a scatter-gather approach based on a cluster-aware work�ow engine
(in this case, snakemake [23]). The overhead on work�ow coordination and executing shell commands
was prohibitive for our initial implementation, so we pursued a purpose-built multithreaded solution
instead.
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Methods

Sketching the Sequence Read Archive

We determined the accessions of all publicly available shotgun metagenomic via the query string 
"METAGENOMIC"[Source] NOT amplicon[All Fields]  at the NCBI Sequence Read Archive Web

site, https://www.ncbi.nlm.nih.gov/sra. We then downloaded all runs for all accessions and streamed
them into sourmash sketch dna  with parameters -p k=21,31,51,scaled=1000,abund . The
output sourmash signature �les were saved as individual gzipped JSON �les - one �le for each input
data set, each containing 3 sketches.

The resulting catalog contains 767,277 metagenome data sets as of March 2022, with the largest
category annotated as human-associated microbiomes (Table 2). The size of all sketches together is
7.5 TB, containing approximately 375 billion hashes per k-mer size and representing 375 trillion k-
mers . There are 2.20 billion distinct hashes in this collection, representing approximately 2.20 trillion
distinct k-mers.

The average sketch �le size is 9.7 MB, and the median �le size is 570kb. The largest 10,000 data sets
comprise 30% of the total catalog size.

Table 2:  The 10 largest categories of metagenome data set types in the Sequence Read Archive, as of March 2022.

“Scienti�c Name” provided by submitter distinct data sets

human gut metagenome 162187

metagenome 57048

gut metagenome 47244

human metagenome 36438

soil metagenome 35323

mouse gut metagenome 26482

human skin metagenome 25700

Homo sapiens 21020

marine metagenome 14400

human oral metagenome 14235

Implementation of multithreaded search

The branchwater program is built in Rust on top of the sourmash library for loading and comparing
sketches. It implements the following steps:

1. Loads all query sketches into memory from a list of �les.
2. Loads the list of �lenames containing subject sketches to search.
3. In a Rust closure function executed in parallel for each subject sketch �lename,

a. loads the subject sketch from the �le;
b. for each query, determines the estimated overlap between query and subject;
c. reports overlaps above a user-speci�ed threshold.
d. releases all per-metagenome resources



Downsampling of sketches to higher scaled values is performed dynamically, after load (if requested).
Results are reported back to a separate “writer” thread via a threadsafe multi-producer, single-
consumer FIFO queue. We use the rayon par_iter  function to execute the closures in parallel.

This approach leverages the core features of sourmash to e�ciently keep queries in memory and
batch-process metagenome sketches without storing them all in memory. The approach also takes
advantage of the e�ective immutability of queries, which can be shared without data races by multiple
processing threads.

Executing branchwater at the command line

branchwater takes in search parameters as well as two text �les, one containing a list of query �le
paths and one containing a list of subject �le paths. Upon execution, it reports the number of query
sketches loaded and the number of subject �le paths found, and then begins the search. It
progressively reports the number of sketches searched in blocks of 10000, and outputs matches to a
CSV File.

We typically run branchwater in a snakemake work�ow, which manages environment variables and
input/output �les.



Results

Example branchwater search results

To showcase the utility of branchwater search, we searched a gut bacterium mixture against all
indexed SRA metagenomes using a k-mer size of 31. Branchwater search is exhaustive: every query is
searched against every subject metagenome. Reporting is minimal: each match is reported as a single
line in a CSV containing the query and match identities and the k-mer containment of the query in the
match. As a result, we typically use a low default threshold, 0.01, which means that any metagenome
that contains more than 1% of the k-mers in any query is reported. Branchwater search with this
default threshold returned 192,699 metagenomes. We then �ltered these results for metagenomes
that contained at least 20% of query k-mers, retaining 66,705 metagenomes for further analysis. The
summarized SRA metadata (Table 3) provides some insight into the types of metagenomes recovered:
the majority were annotated as “human gut metagenome” or “gut metagenome”, with a smaller
number of other gut-related categories, including “wastewater metagenome” and “mouse gut
metagenome”. Branchwater also reported 167 “sediment metagenome” samples, and upon further
investigation, many of these originated from a transect study investigating the presence of microbes
near a wastewater treatment plant.

Table 3:  Output summary of ScientificNames  from metagenome annotations in the Sequence Read Archive for a
gut bacterium search mixture. We have provided a simple script that imports the SRA metadata and summarizes the
branchwater results at the provided threshold.

Scienti�cName count of matches

human gut metagenome 41089

gut metagenome 6933

metagenome 6144

human metagenome 4666

Homo sapiens 3141

feces metagenome 2261

wastewater metagenome 1279

mouse gut metagenome 191

human feces metagenome 184

sediment metagenome 167

Performance and scaling analysis

In Tables 4 and 5 we show performance metrics for branchwater. Table 4 contains average
measurements and standard deviations for time, memory, and I/O, showing that branchwater is I/O
and memory intensive. Table 5 compares the runtimes and memory usage for a search of the entire
catalog (normalized to 10k samples) with both the random subsets in Table 4 and the largest 10k
sketches in the database. The increased memory usage of the catalog and especially the 10k largest
metagenomes suggests that a relatively small number of metagenomes contributes the bulk of both
time and memory usage to a full catalog search of branchwater.

Table 4:  Time, memory, and I/O input for 5 runs of 1000 queries against 10,000 metagenomes. Queries were randomly
selected from 318k genomes in GTDB rs207. Metagenomes were randomly selected from the full catalog of 767k.



metric observed

time 24.2 +/- 1.7 min

max RSS 16.4 +/- 1.6 GB

I/O in 93.4 +/- 1.9 GB

Table 5:  A comparison of database searches for the entire catalog of 767k metagenomes, with time normalized to 10k
(*), the average of the 10k subsets from Table 4, and the 10k largest metagenomes.

database time max RSS

entire catalog 27.2m 52.5 GB

random 10k subset 24.2m 16.4 GB

10k largest metagenomes 594.0 m 60.0 GB

Figure 1:  branchwater scales well with number of threads. Processing time drops linearly with number of threads,
while total compute stays approximately constant. Memory usage increases linearly with number of threads because
each thread independently loads subject data sets to to search.

Figure 2:  branchwater scales linearly with number of queries and subjects, but number of subjects dominates
runtime. Processing time increases slowly with number of query genomes used to search, because they are held in
memory and fast to compare. Processing time increases quickly with number of subject metagenomes being searched,
because they are large and slow to load and search.

∗



See https://github.com/dib-lab/2022-branchwater-benchmarking for number processing and �gure
generating notebooks.

Post-search validation

The sourmash CLI can be used to explore k-mer matches for individual data sets. This does not
validate the matches beyond con�rming the containment numbers, although sourmash provides
additional information (e.g. estimated abundances) on top of the minimal information provided by
branchwater. FracMinHash generally and branchwater speci�cally have been validated
bioinformatically with read mapping (see [14,16]). This is discussed in more below.



Discussion

Enabling content-based search of very large collections of sequencing data is an open problem, and
approaches that work for smaller collections rarely scale well, even for current database sizes. New
methods that take advantage of speci�c particularities of the query and desired answer can help
bridge the gap between more general methods by allowing �ltering of large databases, resulting in
more manageable subsets that can be used e�ciently with current in depth analysis methods.

K-mer search via sourmash branchwater is a lightweight, scalable approach to content-based search
of petabase-scale collections of sequencing data. Branchwater is designed to recover data sets with
high nucleotide similarity to the query sequence (>= 90% ANI) across the Sequence Read Archive using
computational resources readily available to many researchers. As this approach enables content-
based search across petabases of sequence data, we anticipate it will be most useful for �ltering large
databases to generate a manageable subset of relevant data sets that can be analyzed in detail using
other tools.

Lumian et al. (2022) validated branchwater results by downloading matching Illumina metagenomes
above a speci�c containment threshold and mapping the reads back to the query genomes to
evaluate both mapping detection and e�ective coverage. In all but one case, k-mer-based genome
detection of the query was lower than mapping-based detection - in some cases signi�cantly so. This
was also seen with a a smaller set of samples in Irber et al., 2022 [14], and is likely because mapping-
based approaches can tolerate mismatches, while k-mer based approaches require exact
mismatches.

While demonstrably useful, branchwater search has limitations, some of which are intrinsic to the
approach, and some of which can be overcome with improved database storage and search design.
First, branchwater search relies upon exact matching of long nucleotide k-mers, which work best for
sequences with high sequence identity (90%+ ANI), particularly when combined with thresholding
used for fast search. Approaches using alignment-based techniques may be more useful for detecting
similarity across larger evolutionary distances [10].

Second, as designed, branchwater cannot robustly detect sequence similarity for data sets under
10kb in size. This limit is related to the scaling approach used to reduce the e�ective search space and
enable petabase-scale search. Branchwater leverages FracMinHash sketching to build a compressed
representation of each data set, which enables direct and accurate sequence similarity and
containment comparisons without needing to access the original sequencing reads. Because only a
fraction of the original data needs to be stored, FracMinHash sketches are good basic components in
the implementation of systems that allow searching large collections of datasets. However, this
approach comes with some detection limitations. Robust detection requires a minimum overlap of 2-3
hashes [14]. With the  parameters used in branchwater, this represents approximately 2-3
kb of matching sequence. Since many plasmids and most bacterial and archaeal genomes are far
larger than 10kb, branchwater is well suited to detecting matches to such sequences in the SRA.

Here we note that branchwater has a one-sided error: matches of 3 hashes are reliable guarantees of
the presence of sequence, while no match does not guarantee absence of sequence. In particular,
sequences smaller than 10kb may be missed despite being present. Future storage and search
optimizations may enable higher resolution search.

Interestingly, k-mer detection and FracMinHash speci�cally is quite sensitive even when genome
coverage is low. This is because (1) 1x sequencing coverage of a genome will yield approximately 2/3
of the k-mers in that genome, (2) 21-mers, 31-mers, and 51-mers are all highly speci�c in combination,

S = 1000



and (3) genomes are large, so detecting 3 or more hashes indicates that 3kb or more overlap is
present.

Tackling biological use cases with branchwater

K-mer search via branchwater has been used in two projects so far - Lumian et al. (2022) [16] and
Viehweger et al. (2021) [15]. Viehweger et al. used branchwater to �nd a metagenome containing an
additional Klebsiella pneumoniae for a large scale analysis of outbreak data, while Lumian et
al. conducted a global biogeography analysis of �ve new antarctic cyanobacteria. Both studies
bene�ted from the low cost and comprehensive nature of the search.

We expect a broader range and more elaborate set of use cases to emerge as petabase scale search
becomes more widely available. The low cost of search with branchwater is particularly enabling for
exploratory e�orts, although the sheer size of the underlying data needed even for branchwater
continues to present obstacles.

There are several scienti�c limitations of our approach to overcome as well. The current search
approach has limited sensitivity to divergent sequence beyond the genus level, and cannot �nd
smaller matches. These are topics for future research and development.

Following up on branchwater results

Many branchwater use cases are intended for early-stage hypothesis generation and re�nement,
i.e. branchwater implements the �rst part of a “hit to lead” pipeline. Hence branchwater operates at
an early stage in both conceptual and concrete work�ows. The next steps after executing branchwater
are (1) choosing a threshold at which to �lter results, (2) evaluating the overall results by type of
metagenome retrieved, and (3) retrieving the data underlying the matches.

Branchwater search is exhaustive and can be too sensitive for many applications: that is, branchwater
may return too many results for detailed investigation. Thus the �rst analysis step taken is typically
picking a more stringent threshold. The number of metagenomes results is highly dependent on the
query, ranging from dozens of results for organisms from understudied environments to tens or
hundreds of thousands of results for organisms from well-sequenced environments, such as human
gut search in (3). As a result, thresholds are typically chosen based on the use case and the observed
distribution of the annotated metagenome type ( ScientificName  from the SRA Runinfo database).
After �ltering, many paths can be taken. A plethora of general purpose bioinformatics tools exist for
working with the data from individual metagenomes.

We have built two custom tools in concert with sourmash and branchwater, genome-grist and
spacegraphcats. Genome-grist performs an entirely automated reference-based characterization of
individual metagenomes that uses the minimum metagenome cover produced by sourmash gather to
guide mapping of short reads; it is described in Irber et al. [14] and was used in Lumian et al. [16].
While genome-grist does download the entire data set in order to map the reads, it is reference based
and thus relatively lightweight.

spacegraphcats is an assembly-graph based investigative tool for metagenomes that retrieves graph
neighborhoods from metagenome assembly graphs for the purpose of investigating strain variation
[24]. It was used to retrieve putative accessory elements from sourmash matches in Reiter et al. (2022)
[25] and Lumian et al. (2021) [26]. It is much heavier weight than genome-grist because it relies on a
compact De Bruijn graph, which is expensive to build for very rich or diverse metagenomes.

Design alternatives to the current branchwater implementation



The current branchwater software is a simple and e�ective implementation that is easy to analyze
algorithmically and supports a number of use cases. However, many improvements are possible:
FracMinHash analyses are based on comparing collections of 64-bit integers, and there are many
e�ective tools and approaches for organizing and searching such collections more e�ciently than is
presently done.

One area for particular improvement is storing and loading sketches more e�ciently. The current
JSON-based format is convenient for debugging and multi-language interoperability but is extremely
ine�cient. Moreover, each �le currently contains three k-mer sketches (one per each desired k-mer
search size), which means approximately 3 times as much data is loaded per �le than is actually used
in a comparison. FracMinHash also could support fractional loading, i.e. decreased resolution by
loading only the bottom portion of the sketch; this would enable must faster searches albeit at lower
resolution. This is not yet supported by the underlying sourmash library.

Currently the data �les are organized as �at �les in a single directory on a single network �le system.
There are a variety of practical ways to speed up the search by distributing sketch �les across multiple
nodes, but this is logistically challenging. In particular, our current usage involves running
branchwater once every few weeks on our HPC, which does not have su�cient local storage to
distribute the data sets across nodes. In addition, the speed savings from distributing sketches across
nodes is unlikely to be rewarding enough to o�set the maintenance requirements for a distributed
collection of 7.5 TB of sketches. Future work could include implementation of an automated
distribution system, although careful evaluation of the maintenance and update requirements would
be needed.

We could also create a simple pre-�lter for each �le using a data structure with one-sided error. For
example, we could create a Bloom �lter for each sketch that could be used to estimate containment
prior to loading the full sketch �le. However, for some potentially common use cases such as queries
with many matches, this could add signi�cant I/O without speeding up the overall search.

Building an inverted index that maps hashes to data sets could also enable rapid queries. Two
challenges here are the scale of the catalog and the number of data sets; the total number of hashes
present in our metagenome catalog is 375 billion hashes, across nearly 800,000 data sets.

Despite these many opportunities for optimization, we argue that there is a signi�cant bene�t to the
simplicity of our current approach. In particular, providing the sketches in individual �les organized by
accession makes it straightforward to access individual sketches by a distinct ID and quickly update
the overall metagenome catalog. This is particularly valuable since the sourmash Python package
provides a �exible suite of tools for inspecting and manipulating individual metagenome sketches.
The lack of auxiliary data structures also avoids expensive load and synchronization steps when
adding new datasets. These features are important for downstream user investigation as well as
maintainability and correctness, which are important considerations in any scienti�c software
work�ow.



Conclusion

We provide a �exible and fast petabase-scale search based on FracMinHash, together with some
simple downstream summarization tools and an increasingly mature (albeit slower) investigative
ecosystem. This supports and enables a wide range of biological use cases that take advantage of
public data; these use cases range from biomedical to ecological to technical (Table 1).

Data availability statement:

All of the original data for the sketches in the branchwater database is available from the NCBI
Sequence Read Archive. A current catalog of the SRA accessions is available at XXX. The sketch
collection is 7.5 TB and is available upon request. All sourmash sketches are provided under Creative
Commons Zero (CC0) - No Rights Reserved.
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